Zampieri Mattia, Enke Tim, Chubukov Victor, Ricci Vito, Piddock Laura, Sauer Uwe
Institute of Molecular Systems Biology, ETH Zürich, Zürich, Switzerland
Institute of Molecular Systems Biology, ETH Zürich, Zürich, Switzerland.
Mol Syst Biol. 2017 Mar 6;13(3):917. doi: 10.15252/msb.20167028.
Despite our continuous improvement in understanding antibiotic resistance, the interplay between natural selection of resistance mutations and the environment remains unclear. To investigate the role of bacterial metabolism in constraining the evolution of antibiotic resistance, we evolved growing on glycolytic or gluconeogenic carbon sources to the selective pressure of three different antibiotics. Profiling more than 500 intracellular and extracellular putative metabolites in 190 evolved populations revealed that carbon and energy metabolism strongly constrained the evolutionary trajectories, both in terms of speed and mode of resistance acquisition. To interpret and explore the space of metabolome changes, we developed a novel constraint-based modeling approach using the concept of shadow prices. This analysis, together with genome resequencing of resistant populations, identified condition-dependent compensatory mechanisms of antibiotic resistance, such as the shift from respiratory to fermentative metabolism of glucose upon overexpression of efflux pumps. Moreover, metabolome-based predictions revealed emerging weaknesses in resistant strains, such as the hypersensitivity to fosfomycin of ampicillin-resistant strains. Overall, resolving metabolic adaptation throughout antibiotic-driven evolutionary trajectories opens new perspectives in the fight against emerging antibiotic resistance.
尽管我们在理解抗生素耐药性方面不断取得进展,但耐药突变的自然选择与环境之间的相互作用仍不清楚。为了研究细菌代谢在限制抗生素耐药性进化中的作用,我们使细菌在糖酵解或糖异生碳源上生长,以适应三种不同抗生素的选择压力。对190个进化群体中500多种细胞内和细胞外推定代谢物进行分析后发现,碳和能量代谢在耐药性获得的速度和模式方面都强烈限制了进化轨迹。为了解释和探索代谢组变化的空间,我们利用影子价格的概念开发了一种基于约束的新型建模方法。该分析与耐药群体的基因组重测序一起,确定了抗生素耐药性的条件依赖性补偿机制,例如外排泵过度表达时葡萄糖从呼吸代谢向发酵代谢的转变。此外,基于代谢组的预测揭示了耐药菌株中出现的弱点,例如氨苄青霉素耐药菌株对磷霉素的超敏性。总体而言,解析抗生素驱动的进化轨迹中的代谢适应为对抗新出现的抗生素耐药性开辟了新的视角。