Sewgoolam Bevika, Jim Kin Ki, de Bakker Vincent, Bock Florian P, Gibson Paddy S, Veening Jan-Willem
Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland.
Nat Commun. 2025 Jul 14;16(1):6491. doi: 10.1038/s41467-025-61814-x.
Streptococcus pneumoniae is a human pathogen that has become increasingly resistant to synthetic fluoroquinolone antibiotics that target bacterial topoisomerases. To identify pathways essential under fluoroquinolone stress and potential novel targets to revitalize use of this antibiotic class, we perform genome-wide CRISPRi-seq screens and generate antibiotic-gene essentiality signatures. Expectedly, genes involved in DNA recombination and repair become more important under fluoroquinolone-induced DNA damage, including recA, recJ, recF, recO, rexAB, and ruvAB. Surprisingly, specific downregulation of the gene encoding the histidine kinase LiaS caused fluoroquinolone hypersensitivity. LiaS is part of the LiaFSR (VraTSR) three-component regulatory system involved in cell envelope homeostasis. We show that LiaS keeps the response regulator LiaR inactive, and that liaS deletion causes LiaR hyperphosphorylation and upregulation of the LiaR regulon. We use RNA-seq to refine the LiaR regulon, highlighting the role of heat-shock response and pleiotropic regulator SpxA2 in fluoroquinolone sensitivity. Activating the LiaR-regulon by the cell envelope-targeting antibiotic bacitracin synergized with ciprofloxacin and levofloxacin, restoring sensitivity in fluoroquinolone-resistant strains in vitro. Furthermore, bacitracin/levofloxacin combination therapy is effective in vivo and improved treatment of fluoroquinolone-resistant S. pneumoniae infection in a zebrafish meningitis model. These findings offer a starting point for identification and validation of potent combination therapies to treat antibiotic-resistant pneumococcal infections.
肺炎链球菌是一种人类病原体,对靶向细菌拓扑异构酶的合成氟喹诺酮类抗生素的耐药性日益增强。为了确定在氟喹诺酮压力下必不可少的途径以及恢复这类抗生素使用的潜在新靶点,我们进行了全基因组CRISPRi-seq筛选并生成了抗生素-基因必需性特征。不出所料,参与DNA重组和修复的基因在氟喹诺酮诱导的DNA损伤下变得更加重要,包括recA、recJ、recF、recO、rexAB和ruvAB。令人惊讶的是,编码组氨酸激酶LiaS的基因的特异性下调导致氟喹诺酮超敏反应。LiaS是参与细胞壁稳态的LiaFSR(VraTSR)三组分调节系统的一部分。我们表明,LiaS使反应调节因子LiaR失活,而liaS缺失会导致LiaR过度磷酸化和LiaR调控子上调。我们使用RNA-seq来完善LiaR调控子,突出热休克反应和多效调节因子SpxA2在氟喹诺酮敏感性中的作用。通过靶向细胞壁的抗生素杆菌肽激活LiaR调控子与环丙沙星和左氧氟沙星协同作用,在体外恢复了氟喹诺酮耐药菌株的敏感性。此外,杆菌肽/左氧氟沙星联合疗法在体内有效,并改善了斑马鱼脑膜炎模型中氟喹诺酮耐药肺炎链球菌感染的治疗效果。这些发现为识别和验证治疗耐抗生素肺炎球菌感染有效联合疗法提供了一个起点。