Suppr超能文献

基于知识的熵改进了天然蛋白质结构的识别。

Knowledge-based entropies improve the identification of native protein structures.

作者信息

Sankar Kannan, Jia Kejue, Jernigan Robert L

机构信息

Bioinformatics and Computational Biology Interdepartmental Program, Iowa State University, Ames, IA 50011.

Roy J. Carver Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, IA 50011.

出版信息

Proc Natl Acad Sci U S A. 2017 Mar 14;114(11):2928-2933. doi: 10.1073/pnas.1613331114. Epub 2017 Mar 6.

Abstract

Evaluating protein structures requires reliable free energies with good estimates of both potential energies and entropies. Although there are many demonstrated successes from using knowledge-based potential energies, computing entropies of proteins has lagged far behind. Here we take an entirely different approach and evaluate knowledge-based conformational entropies of proteins based on the observed frequencies of contact changes between amino acids in a set of 167 diverse proteins, each of which has two alternative structures. The results show that charged and polar interactions break more often than hydrophobic pairs. This pattern correlates strongly with the average solvent exposure of amino acids in globular proteins, as well as with polarity indices and the sizes of the amino acids. Knowledge-based entropies are derived by using the inverse Boltzmann relationship, in a manner analogous to the way that knowledge-based potentials have been extracted. Including these new knowledge-based entropies almost doubles the performance of knowledge-based potentials in selecting the native protein structures from decoy sets. Beyond the overall energy-entropy compensation, a similar compensation is seen for individual pairs of interacting amino acids. The entropies in this report have immediate applications for 3D structure prediction, protein model assessment, and protein engineering and design.

摘要

评估蛋白质结构需要可靠的自由能,同时对势能和熵都要有良好的估计。尽管基于知识的势能有许多成功的应用案例,但蛋白质熵的计算却远远落后。在此,我们采用了一种截然不同的方法,基于167种不同蛋白质中氨基酸之间接触变化的观测频率,评估基于知识的蛋白质构象熵,其中每种蛋白质都有两种不同的结构。结果表明,带电和极性相互作用比疏水对更容易断裂。这种模式与球状蛋白质中氨基酸的平均溶剂暴露程度、极性指数以及氨基酸大小密切相关。基于知识的熵是通过使用玻尔兹曼逆关系推导出来的,其方式类似于提取基于知识的势能。在从诱饵集中选择天然蛋白质结构时,纳入这些新的基于知识的熵几乎使基于知识的势能的性能提高了一倍。除了整体的能量 - 熵补偿外,对于相互作用的氨基酸对也观察到了类似的补偿。本报告中的熵在三维结构预测、蛋白质模型评估以及蛋白质工程与设计方面有直接应用。

相似文献

1
Knowledge-based entropies improve the identification of native protein structures.
Proc Natl Acad Sci U S A. 2017 Mar 14;114(11):2928-2933. doi: 10.1073/pnas.1613331114. Epub 2017 Mar 6.
2
New Knowledge-Based Scoring Function with Inclusion of Backbone Conformational Entropies from Protein Structures.
J Chem Inf Model. 2018 Mar 26;58(3):724-732. doi: 10.1021/acs.jcim.7b00601. Epub 2018 Feb 22.
3
Discrimination power of knowledge-based potential dictated by the dominant energies in native protein structures.
Amino Acids. 2019 Jul;51(7):1029-1038. doi: 10.1007/s00726-019-02743-0. Epub 2019 May 16.
4
Free energies for coarse-grained proteins by integrating multibody statistical contact potentials with entropies from elastic network models.
J Struct Funct Genomics. 2011 Jul;12(2):137-47. doi: 10.1007/s10969-011-9113-3. Epub 2011 Jun 15.
5
Inference of the solvation energy parameters of amino acids using maximum entropy approach.
J Chem Phys. 2008 Jul 21;129(3):035102. doi: 10.1063/1.2953691.
6
Solvation thermodynamics of amino acid side chains on a short peptide backbone.
J Chem Phys. 2015 Apr 14;142(14):144502. doi: 10.1063/1.4917076.
7
Hydrophobic residues can identify native protein structures.
Proteins. 2018 Apr;86(4):467-474. doi: 10.1002/prot.25466. Epub 2018 Feb 5.
9
Novel nonlinear knowledge-based mean force potentials based on machine learning.
IEEE/ACM Trans Comput Biol Bioinform. 2011 Mar-Apr;8(2):476-86. doi: 10.1109/TCBB.2010.86.
10
Amino acid conformational preferences and solvation of polar backbone atoms in peptides and proteins.
J Mol Biol. 2000 Jul 28;300(5):1335-59. doi: 10.1006/jmbi.2000.3901.

引用本文的文献

1
Entropies Derived from the Packing Geometries within a Single Protein Structure.
ACS Omega. 2022 Jun 9;7(24):20719-20730. doi: 10.1021/acsomega.2c00999. eCollection 2022 Jun 21.
2
A simple neural network implementation of generalized solvation free energy for assessment of protein structural models.
RSC Adv. 2019 Nov 6;9(62):36227-36233. doi: 10.1039/c9ra05168f. eCollection 2019 Nov 4.
3
Structure-conditioned amino-acid couplings: How contact geometry affects pairwise sequence preferences.
Protein Sci. 2022 Apr;31(4):900-917. doi: 10.1002/pro.4280. Epub 2022 Feb 15.
4
A novel algorithm for ranking RNA structure candidates.
Biophys J. 2022 Jan 4;121(1):7-10. doi: 10.1016/j.bpj.2021.12.004. Epub 2021 Dec 10.
5
Peptide Mediated Antimicrobial Dental Adhesive System.
Appl Sci (Basel). 2019 Feb;9(3). doi: 10.3390/app9030557. Epub 2019 Feb 8.
6
Characterizing and Predicting Protein Hinges for Mechanistic Insight.
J Mol Biol. 2020 Jan 17;432(2):508-522. doi: 10.1016/j.jmb.2019.11.018. Epub 2019 Nov 29.
7
Advances in coarse-grained modeling of macromolecular complexes.
Curr Opin Struct Biol. 2018 Oct;52:119-126. doi: 10.1016/j.sbi.2018.11.005. Epub 2018 Nov 30.
9
Directional Force Originating from ATP Hydrolysis Drives the GroEL Conformational Change.
Biophys J. 2017 Apr 25;112(8):1561-1570. doi: 10.1016/j.bpj.2017.03.004.

本文引用的文献

1
Protein structure determination using metagenome sequence data.
Science. 2017 Jan 20;355(6322):294-298. doi: 10.1126/science.aah4043.
2
2D Entropy of Discrete Molecular Ensembles.
J Chem Theory Comput. 2006 Jan;2(1):18-24. doi: 10.1021/ct050118b.
3
Frustration in biomolecules.
Q Rev Biophys. 2014 Nov;47(4):285-363. doi: 10.1017/S0033583514000092. Epub 2014 Sep 16.
4
Critical assessment of methods of protein structure prediction (CASP)--round x.
Proteins. 2014 Feb;82 Suppl 2(0 2):1-6. doi: 10.1002/prot.24452. Epub 2013 Dec 17.
6
Emerging methods in protein co-evolution.
Nat Rev Genet. 2013 Apr;14(4):249-61. doi: 10.1038/nrg3414. Epub 2013 Mar 5.
7
The dark energy of proteins comes to light: conformational entropy and its role in protein function revealed by NMR relaxation.
Curr Opin Struct Biol. 2013 Feb;23(1):75-81. doi: 10.1016/j.sbi.2012.11.005. Epub 2012 Dec 13.
8
Structure fluctuations and conformational changes in protein binding.
J Bioinform Comput Biol. 2012 Apr;10(2):1241002. doi: 10.1142/S0219720012410028.
9
Protein activity regulation by conformational entropy.
Nature. 2012 Aug 9;488(7410):236-40. doi: 10.1038/nature11271.
10
Combining statistical potentials with dynamics-based entropies improves selection from protein decoys and docking poses.
J Phys Chem B. 2012 Jun 14;116(23):6725-31. doi: 10.1021/jp2120143. Epub 2012 Apr 23.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验