Suppr超能文献

一种用于对RNA结构候选物进行排名的新算法。

A novel algorithm for ranking RNA structure candidates.

作者信息

Wienecke Anastacia, Laederach Alain

机构信息

Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina; Curriculum in Bioinformatics and Computational Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina.

Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina; Curriculum in Bioinformatics and Computational Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina.

出版信息

Biophys J. 2022 Jan 4;121(1):7-10. doi: 10.1016/j.bpj.2021.12.004. Epub 2021 Dec 10.

Abstract

RNA research is advancing at an ever increasing pace. The newest and most state-of-the-art instruments and techniques have made possible the discoveries of new RNAs, and they have carried the field to new frontiers of disease research, vaccine development, therapeutics, and architectonics. Like proteins, RNAs show a marked relationship between structure and function. A deeper grasp of RNAs requires a finer understanding of their elaborate structures. In pursuit of this, cutting-edge experimental and computational structure-probing techniques output several candidate geometries for a given RNA, each of which is perfectly aligned with experimentally determined parameters. Identifying which structure is the most accurate, however, remains a major obstacle. In recent years, several algorithms have been developed for ranking candidate RNA structures in order from most to least probable, though their levels of accuracy and transparency leave room for improvement. Most recently, advances in both areas are demonstrated by rsRNASP, a novel algorithm proposed by Tan et al. rsRNASP is a residue-separation-based statistical potential for three-dimensional structure evaluation, and it outperforms the leading algorithms in the field.

摘要

RNA研究正以前所未有的速度向前发展。最新且最先进的仪器和技术使得新RNA的发现成为可能,并且将该领域带入了疾病研究、疫苗开发、治疗学和结构学的新前沿。与蛋白质一样,RNA在结构和功能之间表现出显著的关系。要更深入地理解RNA,需要更精细地了解其复杂的结构。为此,前沿的实验和计算结构探测技术为给定的RNA输出了几种候选几何结构,每一种都与实验确定的参数完美匹配。然而,确定哪种结构最准确仍然是一个主要障碍。近年来,已经开发了几种算法来对候选RNA结构按可能性从高到低进行排序,尽管它们的准确性和透明度还有提升空间。最近,Tan等人提出的一种新算法rsRNASP展示了这两个领域的进展。rsRNASP是一种基于残基分离的三维结构评估统计势能,它在该领域领先算法中表现更优。

相似文献

1
A novel algorithm for ranking RNA structure candidates.一种用于对RNA结构候选物进行排名的新算法。
Biophys J. 2022 Jan 4;121(1):7-10. doi: 10.1016/j.bpj.2021.12.004. Epub 2021 Dec 10.
6
Efficient algorithms for probing the RNA mutation landscape.用于探索RNA突变图谱的高效算法。
PLoS Comput Biol. 2008 Aug 8;4(8):e1000124. doi: 10.1371/journal.pcbi.1000124.
8
Efficient RNA pairwise structure comparison by SETTER method.通过 SETTER 方法实现高效的 RNA 成对结构比较。
Bioinformatics. 2012 Jul 15;28(14):1858-64. doi: 10.1093/bioinformatics/bts301. Epub 2012 May 18.
9
Computational analysis of RNAs.RNA的计算分析
Cold Spring Harb Symp Quant Biol. 2006;71:117-28. doi: 10.1101/sqb.2006.71.003.
10
Recent advances in RNA folding.RNA 折叠的最新进展。
J Biotechnol. 2017 Nov 10;261:97-104. doi: 10.1016/j.jbiotec.2017.07.007. Epub 2017 Jul 8.

本文引用的文献

2
Direct Mapping of Higher-Order RNA Interactions by SHAPE-JuMP.通过 SHAPE-JuMP 进行高等 RNA 相互作用的直接作图。
Biochemistry. 2021 Jun 29;60(25):1971-1982. doi: 10.1021/acs.biochem.1c00270. Epub 2021 Jun 14.
7
RNA Splicing by the Spliceosome.剪接体的 RNA 剪接。
Annu Rev Biochem. 2020 Jun 20;89:359-388. doi: 10.1146/annurev-biochem-091719-064225. Epub 2019 Dec 3.
9
Coding or Noncoding, the Converging Concepts of RNAs.编码或非编码,RNA的趋同概念
Front Genet. 2019 May 22;10:496. doi: 10.3389/fgene.2019.00496. eCollection 2019.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验