Suppr超能文献

通过 RNA-seq 分析阐明了泽兰中的萜类代谢。

Elucidation of terpenoid metabolism in Scoparia dulcis by RNA-seq analysis.

机构信息

Graduate School of Medicine and Pharmaceutical Sciences for Research, University of Toyama, 2630 Sugitani, Toyama, Toyama 930-0194, Japan.

出版信息

Sci Rep. 2017 Mar 7;7:43311. doi: 10.1038/srep43311.

Abstract

Scoparia dulcis biosynthesize bioactive diterpenes, such as scopadulcic acid B (SDB), which are known for their unique molecular skeleton. Although the biosynthesis of bioactive diterpenes is catalyzed by a sequence of class II and class I diterpene synthases (diTPSs), the mechanisms underlying this process are yet to be fully identified. To elucidate these biosynthetic machinery, we performed a high-throughput RNA-seq analysis, and de novo assembly of clean reads revealed 46,332 unique transcripts and 40,503 two unigenes. We found diTPSs genes including a putative syn-copalyl diphosphate synthase (SdCPS2) and two kaurene synthase-like (SdKSLs) genes. Besides them, total 79 full-length of cytochrome P450 (CYP450) genes were also discovered. The expression analyses showed selected CYP450s associated with their expression pattern of SdCPS2 and SdKSL1, suggesting that CYP450 candidates involved diterpene modification. SdCPS2 represents the first predicted gene to produce syn-copalyl diphosphate in dicots. In addition, SdKSL1 potentially contributes to the SDB biosynthetic pathway. Therefore, these identified genes associated with diterpene biosynthesis lead to the development of genetic engineering focus on diterpene metabolism in S. dulcis.

摘要

甜叶菊合成具有生物活性的二萜类化合物,如 scopadulcic 酸 B(SDB),其独特的分子骨架而闻名。虽然生物活性二萜类化合物的生物合成是由一系列的 II 类和 I 类二萜合酶(diTPSs)催化的,但这一过程的机制尚未完全确定。为了阐明这些生物合成机制,我们进行了高通量 RNA-seq 分析,通过对清洁读数进行从头组装,揭示了 46332 个独特的转录本和 40503 个二聚体。我们发现了包括一个假定的 syn-copalyl 二磷酸合酶(SdCPS2)和两个贝壳杉烯合酶样(SdKSLs)基因在内的 diTPSs 基因。除此之外,还发现了 79 个全长细胞色素 P450(CYP450)基因。表达分析表明,所选 CYP450 与 SdCPS2 和 SdKSL1 的表达模式相关,表明 CYP450 候选基因参与二萜修饰。SdCPS2 代表在双子叶植物中首次预测产生 syn-copalyl 二磷酸的基因。此外,SdKSL1 可能有助于 SDB 生物合成途径。因此,这些与二萜生物合成相关的鉴定基因为甜叶菊中二萜代谢的遗传工程研究提供了依据。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1769/5339715/e61d3cd7b2ef/srep43311-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验