Suppr超能文献

三元硫属化物的高通量搜索用于 p 型透明电极。

High-throughput search of ternary chalcogenides for p-type transparent electrodes.

机构信息

Institut Lumière Matière, UMR5306 Universitè Lyon 1-CNRS, Universitè de Lyon, F-69622 Villeurbanne Cedex, France.

Institut für Festkörpertheorie und -optik and ETSF, Friedrich-Schiller-Universität Jena, Max-Wien-Platz 1, 07743 Jena, Germany.

出版信息

Sci Rep. 2017 Mar 7;7:43179. doi: 10.1038/srep43179.

Abstract

Delafossite crystals are fascinating ternary oxides that have demonstrated transparent conductivity and ambipolar doping. Here we use a high-throughput approach based on density functional theory to find delafossite and related layered phases of composition ABX, where A and B are elements of the periodic table, and X is a chalcogen (O, S, Se, and Te). From the 15 624 compounds studied in the trigonal delafossite prototype structure, 285 are within 50 meV/atom from the convex hull of stability. These compounds are further investigated using global structural prediction methods to obtain their lowest-energy crystal structure. We find 79 systems not present in the materials project database that are thermodynamically stable and crystallize in the delafossite or in closely related structures. These novel phases are then characterized by calculating their band gaps and hole effective masses. This characterization unveils a large diversity of properties, ranging from normal metals, magnetic metals, and some candidate compounds for p-type transparent electrodes.

摘要

水锌矿型晶体是一类有趣的三元氧化物,具有透明导电性和双极性掺杂特性。在这里,我们采用基于密度泛函理论的高通量方法来寻找水锌矿型及其相关的 ABX 层状相,其中 A 和 B 是元素周期表中的元素,X 是一种硫属元素(O、S、Se 和 Te)。在研究的 15624 种三角水锌矿型原型结构化合物中,有 285 种化合物与稳定性的凸包的能量差在 50meV/atom 以内。我们进一步使用全局结构预测方法研究这些化合物,以获得其能量最低的晶体结构。我们发现有 79 个系统不在材料项目数据库中,但它们在热力学上是稳定的,并以水锌矿型或与之密切相关的结构结晶。然后,我们通过计算这些新相的能带隙和空穴有效质量来对它们进行特性分析。这种特性分析揭示了广泛的性质,包括正常金属、磁性金属和一些 p 型透明电极的候选化合物。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d3da/5339873/fe8efe11217b/srep43179-f1.jpg

相似文献

3
Accelerated Screening of Ternary Chalcogenides for Potential Photovoltaic Applications.
J Am Chem Soc. 2023 Oct 11;145(40):21925-21936. doi: 10.1021/jacs.3c06207. Epub 2023 Sep 11.
4
Predictions of delafossite-hosted honeycomb and kagome phases.
Phys Chem Chem Phys. 2024 Mar 6;26(10):8327-8333. doi: 10.1039/d3cp04039a.
5
High-throughput screening and classification of layered di-metal chalcogenides.
Nanoscale. 2019 Aug 7;11(29):13924-13933. doi: 10.1039/c9nr03752g. Epub 2019 Jul 15.
6
Polymorph engineering of CuMO2 (M = Al, Ga, Sc, Y) semiconductors for solar energy applications: from delafossite to wurtzite.
Acta Crystallogr B Struct Sci Cryst Eng Mater. 2015 Dec 1;71(Pt 6):702-6. doi: 10.1107/S2052520615018387. Epub 2015 Nov 7.
8
Electronic structure of transparent oxides with the Tran-Blaha modified Becke-Johnson potential.
J Phys Condens Matter. 2012 May 23;24(20):205503. doi: 10.1088/0953-8984/24/20/205503. Epub 2012 Apr 27.
10
Evolutionary Algorithm-Based Crystal Structure Prediction of CuZnO Ternary Oxides.
Molecules. 2023 Aug 10;28(16):5986. doi: 10.3390/molecules28165986.

引用本文的文献

2
A photodetector based on the non-centrosymmetric 2D pseudo-binary chalcogenide MnInSe.
J Mater Chem C Mater. 2025 Jan 15;13(10):5356-5369. doi: 10.1039/d4tc04380d. eCollection 2025 Mar 6.
5
p-type transparent superconductivity in a layered oxide.
Sci Adv. 2020 Jul 15;6(29):eabb8570. doi: 10.1126/sciadv.abb8570. eCollection 2020 Jul.
6
Tellurium Doping and the Structural, Electronic, and Optical Properties of NaYSTe Alloys.
ACS Omega. 2019 Jun 28;4(6):11320-11331. doi: 10.1021/acsomega.9b01330. eCollection 2019 Jun 30.

本文引用的文献

1
Luminescence of delafossite-type CuAlO fibers with Eu substitution for Al cations.
Sci Technol Adv Mater. 2016 Apr 25;17(1):200-209. doi: 10.1080/14686996.2016.1172024. eCollection 2016.
3
Easily doped p-type, low hole effective mass, transparent oxides.
Sci Rep. 2016 Feb 8;6:20446. doi: 10.1038/srep20446.
4
Nearly free electrons in a 5d delafossite oxide metal.
Sci Adv. 2015 Oct 23;1(9):e1500692. doi: 10.1126/sciadv.1500692. eCollection 2015 Oct.
5
Optimized Exchange and Correlation Semilocal Functional for the Calculation of Energies of Formation.
J Chem Theory Comput. 2015 Aug 11;11(8):3844-50. doi: 10.1021/acs.jctc.5b00529.
6
Structure determination of KScS₂, RbScS₂ and KLnS₂ (Ln = Nd, Sm, Tb, Dy, Ho, Er, Tm and Yb) and crystal-chemical discussion.
Acta Crystallogr C Struct Chem. 2015 Jul;71(Pt 7):623-30. doi: 10.1107/S2053229615011833. Epub 2015 Jun 27.
7
First-principles study of band alignments in the p-type hosts BaM2X2 (M = Cu, Ag; X = S, Se).
J Phys Condens Matter. 2014 Apr 16;26(15):155802. doi: 10.1088/0953-8984/26/15/155802. Epub 2014 Mar 27.
8
Conducting boron sheets formed by the reconstruction of the α-boron (111) surface.
Phys Rev Lett. 2013 Sep 27;111(13):136101. doi: 10.1103/PhysRevLett.111.136101. Epub 2013 Sep 25.
10
Low-energy polymeric phases of alanates.
Phys Rev Lett. 2013 Mar 29;110(13):135502. doi: 10.1103/PhysRevLett.110.135502. Epub 2013 Mar 25.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验