Suppr超能文献

碲掺杂与NaYSTe合金的结构、电子及光学性质

Tellurium Doping and the Structural, Electronic, and Optical Properties of NaYSTe Alloys.

作者信息

Azzouz Lahcene, Halit Mohamed, Charifi Zoulikha, Matta Chérif F

机构信息

Laboratoire Physique des Matériaux, Université Amar Telidji, BP 37G, Laghouat 03000, Algeria.

Department of Chemistry and Physics, Mount Saint Vincent University, Halifax, Nova Scotia B3M 2J6, Canada.

出版信息

ACS Omega. 2019 Jun 28;4(6):11320-11331. doi: 10.1021/acsomega.9b01330. eCollection 2019 Jun 30.

Abstract

New ternary and quaternary NaYSTe alloys (with = 0, 0.33, 0.67, and 1) are proposed as promising candidates for photon energy conversion in photovoltaic applications. The effects of Te doping on crystal, spectral, and optical properties are studied within the framework of periodic density functional theory. Increasing Te content decreases the band gap ( ) considerably (from 3.96 ( = 0) to 1.62 eV ( = 0.67)) and fits a quadratic model ( () = 3.96-6.78 + 4.70 , ( = 0.96, = 4)). The band gap of 1.62 eV makes the NaYSTe alloy ideal for photovoltaic applications for their ability to absorb in the visible segment of the sunlight spectrum. The calculated exciton binding energies are 9.78 meV for NaYSTe and 6.06 meV for NaYSTe. These values of the order of the thermal energy at room temperature suggest an easily dissociable hole-electron pair. The family of NaYSTe alloys are, therefore, promising candidates for visible photocatalytic devices and worthy of further experimental and theoretical investigations.

摘要

新型三元和四元NaYSTe合金(其中 = 0、0.33、0.67和1)被认为是光伏应用中光子能量转换的有前途的候选材料。在周期性密度泛函理论框架内研究了Te掺杂对晶体、光谱和光学性质的影响。Te含量的增加会显著降低带隙()(从3.96( = 0)降至1.62 eV( = 0.67)),并符合二次模型(() = 3.96 - 6.78 + 4.70 ,( = 0.96, = 4))。1.62 eV的带隙使NaYSTe合金因其能够吸收太阳光光谱的可见光部分而成为光伏应用的理想材料。计算得出的NaYSTe的激子结合能为9.78 meV,NaYSTe的激子结合能为6.06 meV。这些值在室温下与热能处于同一量级,表明空穴 - 电子对易于解离。因此,NaYSTe合金系列是可见光光催化器件的有前途的候选材料,值得进一步的实验和理论研究。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9cc8/6648877/1fbc26ea2f3d/ao-2019-013304_0001.jpg

相似文献

1
Tellurium Doping and the Structural, Electronic, and Optical Properties of NaYSTe Alloys.
ACS Omega. 2019 Jun 28;4(6):11320-11331. doi: 10.1021/acsomega.9b01330. eCollection 2019 Jun 30.
3
Metal-Semiconductor Phase-Transition in WSe Te Monolayer.
Adv Mater. 2017 Jan;29(4). doi: 10.1002/adma.201603991. Epub 2016 Nov 22.
5
Valley phenomena in the candidate phase change material WSeTe.
Commun Phys. 2020;3. doi: https://doi.org/10.1038/s42005-019-0277-7.
6
Tunable relativistic quasiparticle electronic and excitonic behavior of the FAPb(IBr) alloy.
Phys Chem Chem Phys. 2020 Jun 7;22(21):11943-11955. doi: 10.1039/d0cp00496k. Epub 2020 May 15.
9
Band-Gap Nonlinearity in Lead Chalcogenide (PbQ, Q = Te, Se, S) Alloys.
ACS Omega. 2017 Jul 11;2(7):3417-3423. doi: 10.1021/acsomega.7b00539. eCollection 2017 Jul 31.
10
First principles study on structural, electronic and optical properties of HfSSe and ZrSSe ternary alloys.
RSC Adv. 2022 May 11;12(22):14061-14068. doi: 10.1039/d2ra01905a. eCollection 2022 May 5.

引用本文的文献

1
Tellurium and Nano-Tellurium: Medicine or Poison?
Nanomaterials (Basel). 2024 Apr 12;14(8):670. doi: 10.3390/nano14080670.

本文引用的文献

3
Ab Initio Calculation of the Ultraviolet-Visible (UV-vis) Absorption Spectrum, Electron-Loss Function, and Reflectivity of Solids.
J Chem Theory Comput. 2015 Jul 14;11(7):3245-58. doi: 10.1021/acs.jctc.5b00199. Epub 2015 Jun 3.
4
Redetermination of NaGdS2, NaLuS2 and NaYS2.
Acta Crystallogr C Struct Chem. 2014 Jun;70(Pt 6):533-5. doi: 10.1107/S2053229614009607. Epub 2014 May 6.
5
Structure determination of KLaS2, KPrS2, KEuS2, KGdS2, KLuS2, KYS2, RbYS2, NaLaS2 and crystal-chemical analysis of the group 1 and thallium(I) rare-earth sulfide series.
Acta Crystallogr B Struct Sci Cryst Eng Mater. 2014 Apr;70(Pt 2):360-71. doi: 10.1107/S2052520613034574. Epub 2014 Mar 28.
6
Identification of potential photovoltaic absorbers based on first-principles spectroscopic screening of materials.
Phys Rev Lett. 2012 Feb 10;108(6):068701. doi: 10.1103/PhysRevLett.108.068701.
7
Chemoaffinity-mediated synthesis of NaRES2-based nanocrystals as versatile nano-building blocks and durable nano-pigments.
J Am Chem Soc. 2012 Feb 15;134(6):3255-64. doi: 10.1021/ja211103b. Epub 2012 Feb 1.
8
Design of light scattering in nanowire materials for photovoltaic applications.
Nano Lett. 2008 Sep;8(9):2638-42. doi: 10.1021/nl0808076. Epub 2008 Aug 14.
10
Generalized Gradient Approximation Made Simple.
Phys Rev Lett. 1996 Oct 28;77(18):3865-3868. doi: 10.1103/PhysRevLett.77.3865.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验