Suppr超能文献

基于基因组、蛋白质组和表型数据域的非酒精性脂肪性肝病 (NAFLD) 多组分分类器。

A multi-component classifier for nonalcoholic fatty liver disease (NAFLD) based on genomic, proteomic, and phenomic data domains.

机构信息

Geisinger Obesity Research Institute, Danville, PA, USA.

Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA.

出版信息

Sci Rep. 2017 Mar 7;7:43238. doi: 10.1038/srep43238.

Abstract

Non-alcoholic fatty liver disease (NAFLD) represents a spectrum of conditions that include steatohepatitis and fibrosis that are thought to emanate from hepatic steatosis. Few robust biomarkers or diagnostic tests have been developed for hepatic steatosis in the setting of obesity. We have developed a multi-component classifier for hepatic steatosis comprised of phenotypic, genomic, and proteomic variables using data from 576 adults with extreme obesity who underwent bariatric surgery and intra-operative liver biopsy. Using a 443 patient training set, protein biomarker discovery was performed using the highly multiplexed SOMAscan proteomic assay, a set of 19 clinical variables, and the steatosis predisposing PNPLA3 rs738409 single nucleotide polymorphism genotype status. The most stable markers were selected using a stability selection algorithm with a L-regularized logistic regression kernel and were then fitted with logistic regression models to classify steatosis, that were then tested against a 133 sample blinded verification set. The highest area under the ROC curve (AUC) for steatosis of PNPLA3 rs738409 genotype, 8 proteins, or 19 phenotypic variables was 0.913, whereas the final classifier that included variables from all three domains had an AUC of 0.935. These data indicate that multi-domain modeling has better predictive power than comprehensive analysis of variables from a single domain.

摘要

非酒精性脂肪性肝病 (NAFLD) 代表了一系列疾病,包括肝脂肪变性所引起的肝炎和纤维化。在肥胖人群中,针对肝脂肪变性,尚未开发出可靠的生物标志物或诊断性检测方法。我们使用了 576 名接受减肥手术和术中肝活检的极度肥胖成年人的数据,开发了一个由表型、基因组和蛋白质组变量组成的多组分肝脂肪变性分类器。在一个由 443 名患者组成的训练集中,我们使用高度多重 SOMAscan 蛋白质组学测定法、一组 19 个临床变量和肝脂肪变性易感性的 PNPLA3 rs738409 单核苷酸多态性基因型状态,进行了蛋白质生物标志物的发现。使用稳定性选择算法和 L-正则化逻辑回归核选择最稳定的标记物,并使用逻辑回归模型拟合分类器,然后在 133 个样本盲法验证集中进行测试。PNPLA3 rs738409 基因型、8 种蛋白质或 19 种表型变量的肝脂肪变性的最大 ROC 曲线下面积 (AUC) 为 0.913,而包含来自所有三个领域的变量的最终分类器 AUC 为 0.935。这些数据表明,多领域建模比单领域综合分析变量具有更好的预测能力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验