Ghosh Soumita, Zhao Xun, Alim Mouaid, Brudno Michael, Bhat Mamatha
Transplant AI Initiative, Ajmera Transplant Program, University Health Network, Toronto, Ontario, Canada.
Department of Medicine, University of Toronto, Toronto, Ontario, Canada.
Gut. 2025 Jan 17;74(2):295-311. doi: 10.1136/gutjnl-2023-331740.
Advancements in omics technologies and artificial intelligence (AI) methodologies are fuelling our progress towards personalised diagnosis, prognosis and treatment strategies in hepatology. This review provides a comprehensive overview of the current landscape of AI methods used for analysis of omics data in liver diseases. We present an overview of the prevalence of different omics levels across various liver diseases, as well as categorise the AI methodology used across the studies. Specifically, we highlight the predominance of transcriptomic and genomic profiling and the relatively sparse exploration of other levels such as the proteome and methylome, which represent untapped potential for novel insights. Publicly available database initiatives such as The Cancer Genome Atlas and The International Cancer Genome Consortium have paved the way for advancements in the diagnosis and treatment of hepatocellular carcinoma. However, the same availability of large omics datasets remains limited for other liver diseases. Furthermore, the application of sophisticated AI methods to handle the complexities of multiomics datasets requires substantial data to train and validate the models and faces challenges in achieving bias-free results with clinical utility. Strategies to address the paucity of data and capitalise on opportunities are discussed. Given the substantial global burden of chronic liver diseases, it is imperative that multicentre collaborations be established to generate large-scale omics data for early disease recognition and intervention. Exploring advanced AI methods is also necessary to maximise the potential of these datasets and improve early detection and personalised treatment strategies.
组学技术和人工智能(AI)方法的进步推动了我们在肝病个性化诊断、预后和治疗策略方面的进展。本综述全面概述了用于分析肝脏疾病组学数据的人工智能方法的现状。我们概述了各种肝脏疾病中不同组学水平的普遍性,并对各项研究中使用的人工智能方法进行了分类。具体而言,我们强调了转录组学和基因组分析的主导地位,以及对蛋白质组和甲基化组等其他水平的相对较少的探索,这些水平代表了获取新见解的未开发潜力。诸如癌症基因组图谱和国际癌症基因组联盟等公开可用的数据库计划为肝细胞癌的诊断和治疗进展铺平了道路。然而,对于其他肝脏疾病而言,同样可获取的大型组学数据集仍然有限。此外,应用复杂的人工智能方法来处理多组学数据集的复杂性需要大量数据来训练和验证模型,并且在获得具有临床实用性的无偏差结果方面面临挑战。本文讨论了应对数据匮乏并利用机会的策略。鉴于慢性肝病在全球造成的巨大负担,必须建立多中心合作以生成大规模组学数据用于疾病早期识别和干预。探索先进的人工智能方法对于充分发挥这些数据集的潜力并改善早期检测和个性化治疗策略也很有必要。