Suppr超能文献

单层石墨烯上电催化析氢反应的分子方法。

A molecular approach to an electrocatalytic hydrogen evolution reaction on single-layer graphene.

机构信息

Centre for Integrated Nanostructure Physics (CINAP), Institute of Basic Science (IBS), 2066 Seoburo, Jangan-gu, Suwon 16419, Republic of Korea.

Department of Chemistry, Sungkyunkwan University, 2066 Seoburo, Jangan-gu, Suwon 16419, Republic of Korea.

出版信息

Nanoscale. 2017 Mar 17;9(11):3969-3979. doi: 10.1039/c6nr09428g.

Abstract

A major challenge in the development of electrocatalysts is to determine a detailed catalysis mechanism on a molecular level for enhancing catalytic activity. Here, we present bottom-up studies for an electrocatalytic hydrogen evolution reaction (HER) process through molecular activation to systematically control surface catalytic activity corresponding to an interfacial charge transfer in a porphyrin monolayer on inactive graphene. The two-dimensional (2D) assembly of porphyrins that create homogeneous active sites (e.g., electronegative tetrapyrroles (N)) on graphene showed structural stability against electrocatalytic reactions and enhanced charge transfer at the graphene-liquid interface. Performance operations of the graphene field effect transistor (FET) were an effective method to analyse the interfacial charge transfer process associated with information about the chemical nature of the catalytic components. Electronegative pristine porphyrin or Pt-porphyrin networks, where intermolecular hydrogen bonding functioned, showed larger interfacial charge transfers and higher HER performance than Ni-, or Zn-porphyrin. A process to create surface electronegativity by either central N or metal (M)-N played an important role in the electrocatalytic reaction. These findings will contribute to an in-depth understanding at the molecular level for the synergetic effects of molecular structures on the active sites of electrocatalysts toward HER.

摘要

在电催化剂的开发中,一个主要的挑战是确定在分子水平上的详细催化机制,以提高催化活性。在这里,我们通过分子活化对电催化析氢反应(HER)过程进行了自下而上的研究,以系统地控制在惰性石墨烯上单分子层卟啉的界面电荷转移对应的表面催化活性。在石墨烯上形成均匀活性位点(例如,带负电的四吡咯(N))的二维(2D)卟啉组装体显示出对电催化反应的结构稳定性,并增强了在石墨烯-液体界面的电荷转移。石墨烯场效应晶体管(FET)的性能操作是分析与催化组件化学性质相关的界面电荷转移过程的有效方法。带负电的原始卟啉或 Pt-卟啉网络(其中存在分子间氢键)表现出比 Ni-或 Zn-卟啉更大的界面电荷转移和更高的 HER 性能。通过中心 N 或金属(M)-N 来产生表面电负性的过程在电催化反应中起着重要作用。这些发现将有助于深入了解分子结构对电催化剂向 HER 活性中心协同作用的分子水平。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验