Département de chimie and Centre de Recherche sur les Matériaux Avancés (CERMA), Université Laval, 1045 Ave de la Médecine, Québec, G1V 0A6, Canada.
Dipartimento di Chimica, Materiali e Ingegneria Chimica "G. Natta", Politecnico di Milano, Piazza Leonardo da Vinci, 32, 20133, Milano, Italy.
Angew Chem Int Ed Engl. 2017 May 22;56(22):6213-6217. doi: 10.1002/anie.201611834. Epub 2017 Mar 7.
Graphene is a zero-gap, semiconducting 2D material that exhibits outstanding charge-transport properties. One way to open a band gap and make graphene useful as a semiconducting material is to confine the electron delocalization in one dimension through the preparation of graphene nanoribbons (GNR). Although several methods have been reported so far, solution-phase, bottom-up synthesis is the most promising in terms of structural precision and large-scale production. Herein, we report the synthesis of a well-defined, helically coiled GNR from a polychlorinated poly(m-phenylene) through a regioselective photochemical cyclodehydrochlorination (CDHC) reaction. The structure of the helical GNR was confirmed by H NMR, FT-IR, XPS, TEM, and Raman spectroscopy. This Riemann surface-like GNR has a band gap of 2.15 eV and is highly emissive in the visible region, both in solution and the solid state.
石墨烯是一种具有零带隙的半导体二维材料,表现出优异的电荷输运性能。一种将带隙打开并使石墨烯成为有用的半导体材料的方法是通过制备石墨烯纳米带(GNR)来限制电子的一维离域。尽管迄今为止已经报道了几种方法,但就结构精度和大规模生产而言,溶液相、自下而上的合成是最有前途的。在此,我们报告了通过区域选择性光化学环脱氢氯化(CDHC)反应,从多氯代聚(间苯撑)合成出一种结构明确的螺旋状 GNR。通过 1 H NMR、FT-IR、XPS、TEM 和拉曼光谱证实了螺旋 GNR 的结构。这种类似黎曼曲面的 GNR 在溶液和固态中均具有 2.15 eV 的带隙和在可见光区的高发光性。