Suppr超能文献

使用不同曝光参数的锥形束计算机断层扫描技术测量牙种植体周围线性尺寸的准确性。

Accuracy of linear measurements around dental implants by means of cone beam computed tomography with different exposure parameters.

作者信息

Bohner Lauren O L, Tortamano Pedro, Marotti Juliana

机构信息

1 Department of Prosthodontics, School of Dentistry, University of São Paulo, São Paulo, Brazil.

2 Department of Prosthodontics and Biomaterials, Center for Implantology, University Hospital RWTH Aachen, Aachen, Germany.

出版信息

Dentomaxillofac Radiol. 2017 Jul;46(5):20160377. doi: 10.1259/dmfr.20160377. Epub 2017 Mar 23.

Abstract

OBJECTIVES

The aim of this study was to determine the accuracy of linear measurements around dental implants when using CBCT unit devices presenting different exposure parameters.

METHODS

Dental implants (n = 18) were installed in the maxilla of human dry skulls, and images were obtained using two CBCT devices: G1-Care Stream 9300 (70 kVp, 6.3 mA, voxel size 0.18 mm, field of view 8 × 8 cm; Carestream Health, Rochester, NY) and G2-R100 Veraview (75 kVp, 7.0 mA, voxel size 0.125 mm, field of view 8 × 8 cm; J Morita, Irvine, CA). Measurements of bone thickness were performed at three points located (A) in the most apical portion of the implant, (B) 5 mm above the apical point and (C) in the implant platform. Afterwards, values were compared with real measurements obtained by an optical microscopy [control group (CG)]. Data were statistically analyzed with the significance level of p ≤ 0.05.

RESULTS

There was no statistical difference for the mean values of bone thickness on Point A (CG: 4.85 ± 2.25 mm, G1: 4.19 ± 1.68 mm, G2: 4.15 ± 1.75 mm), Point B (CG: 1.50 ± 0.84 mm, G1: 1.61 ± 1.27 mm; G2: 1.68 ± 0.82 mm) and Point C (CG: 1.78 ± 1.33 mm, G1: 1.80 ± 1.09 mm; G2: 1.64 ± 1.11 mm). G1 and G2 differed in bone thickness by approximately 0.76 mm for Point A, 0.36 mm for Point B and 0.08 mm for Point C. A lower intraclass variability was identified for CG (Point A = 0.20 ± 0.25; Point B = 0.15 ± 0.20; Point C = 0.06 ± 0.05 mm) in comparison with G1 (Point A = 0.56 ± 0.52; Point B = 0.48 ± 0.50; Point C = 0.47 ± 0.56 mm) and G2 (Point A = 0.57 ± 0.51; Point B = 0.46 ± 0.46; Point C = 0.36 ± 0.31 mm).

CONCLUSIONS

CBCT devices showed acceptable accuracy for linear measurements around dental implants, despite the exposure parameters used.

摘要

目的

本研究的目的是确定使用具有不同曝光参数的锥形束计算机断层扫描(CBCT)设备时,牙种植体周围线性测量的准确性。

方法

将18颗牙种植体植入人类干燥颅骨的上颌骨中,并使用两台CBCT设备获取图像:G1-锐珂9300(70千伏峰值,6.3毫安,体素大小0.18毫米,视野8×8厘米;锐珂医疗,纽约州罗切斯特)和G2-R100 Veraview(75千伏峰值,7.0毫安,体素大小0.125毫米,视野8×8厘米;日本森田公司,加利福尼亚州欧文)。在位于种植体最根尖部分的三个点(A)、根尖点上方5毫米处的点(B)以及种植体平台处的点(C)进行骨厚度测量。之后,将测量值与通过光学显微镜获得的实际测量值进行比较[对照组(CG)]。数据采用显著性水平p≤0.05进行统计学分析。

结果

点A(CG:4.85±2.25毫米,G1:4.19±1.68毫米,G2:4.15±1.75毫米)、点B(CG:1.50±0.84毫米,G1:1.61±1.27毫米;G2:1.68±0.82毫米)和点C(CG:1.78±1.33毫米,G1:1.80±1.09毫米;G2:1.64±1.11毫米)处的骨厚度平均值无统计学差异。G1和G2在点A处的骨厚度差异约为0.76毫米,点B处为0.36毫米,点C处为0.08毫米。与G1(点A = 0. — 0.52;点B = 0.48±0.50;点C = 0.47±0.56毫米)和G2(点A = 0.57±0.51;点B = 0.46±0.46;点C = 0.36±0.31毫米)相比,CG的组内变异性较低(点A = 0.20±0.25;点B = 0.15±0.20;点C = 0.06±0.05毫米)。

结论

尽管使用了不同的曝光参数,但CBCT设备在牙种植体周围线性测量方面显示出可接受的准确性。

相似文献

1
Accuracy of linear measurements around dental implants by means of cone beam computed tomography with different exposure parameters.
Dentomaxillofac Radiol. 2017 Jul;46(5):20160377. doi: 10.1259/dmfr.20160377. Epub 2017 Mar 23.
2
Measurement of buccal bone volume of dental implants by means of cone-beam computed tomography.
Clin Oral Implants Res. 2012 Jul;23(7):797-804. doi: 10.1111/j.1600-0501.2011.02207.x. Epub 2011 Jun 2.
5
Assessment of Buccal Bone Surrounding Dental Implants Using a High-Frequency Ultrasound Scanner.
Ultrasound Med Biol. 2019 Jun;45(6):1427-1434. doi: 10.1016/j.ultrasmedbio.2019.02.002. Epub 2019 Mar 30.
6
Accuracy of detecting and measuring buccal bone thickness adjacent to titanium dental implants-a cone beam computed tomography in vitro study.
Oral Surg Oral Med Oral Pathol Oral Radiol. 2018 Nov;126(5):432-438. doi: 10.1016/j.oooo.2018.06.004. Epub 2018 Jun 27.
8
The reliability of cone-beam computed tomography to assess bone density at dental implant recipient sites: a histomorphometric analysis by micro-CT.
Clin Oral Implants Res. 2013 Aug;24(8):871-9. doi: 10.1111/j.1600-0501.2011.02390.x. Epub 2012 Jan 17.
10
Accuracy of measuring the cortical bone thickness adjacent to dental implants using cone beam computed tomography.
Clin Oral Implants Res. 2010 Jul;21(7):718-25. doi: 10.1111/j.1600-0501.2009.01905.x.

引用本文的文献

1
Horizontal impact of extensive incisor retraction on alveolar bone.
BMC Oral Health. 2025 Mar 15;25(1):387. doi: 10.1186/s12903-025-05758-0.
2
The Precision of All-on-Four Implant Position Recorded from Three Different CBCT Machines.
Eur J Dent. 2025 May;19(2):337-345. doi: 10.1055/s-0044-1788613. Epub 2024 Jul 23.
3
Trabecular Bone Assessment Using Magnetic-Resonance Imaging: A Pilot Study.
Int J Environ Res Public Health. 2020 Dec 11;17(24):9282. doi: 10.3390/ijerph17249282.
4
Accuracy of cone-beam computed tomography is limited at implant sites with a thin buccal bone: A laboratory study.
J Periodontol. 2021 Apr;92(4):592-601. doi: 10.1002/JPER.20-0222. Epub 2020 Sep 16.
5
Comparison between different cone-beam computed tomography devices in the detection of mechanically simulated peri-implant bone defects.
Imaging Sci Dent. 2020 Jun;50(2):133-139. doi: 10.5624/isd.2020.50.2.133. Epub 2020 Jun 18.
6
High-Frequency Ultrasound for Assessment of Peri-Implant Bone Thickness.
J Clin Med. 2019 Sep 25;8(10):1539. doi: 10.3390/jcm8101539.
7
Clinical guidelines for dental cone-beam computed tomography.
Oral Radiol. 2018 May;34(2):89-104. doi: 10.1007/s11282-018-0314-3. Epub 2018 Jan 11.

本文引用的文献

1
Assessment of cortical bone thickness using ultrasound.
Clin Oral Implants Res. 2017 May;28(5):520-528. doi: 10.1111/clr.12829. Epub 2016 Mar 27.
3
Evaluation of peri-implant buccal bone by computed tomography: an experimental study.
Clin Oral Implants Res. 2016 Aug;27(8):950-5. doi: 10.1111/clr.12663. Epub 2015 Jul 14.
4
Use of dentomaxillofacial cone beam computed tomography in dentistry.
World J Radiol. 2015 Jun 28;7(6):128-30. doi: 10.4329/wjr.v7.i6.128.
5
Effect of field of view in the detection of chemically created peri-implant bone defects in bovine ribs using cone beam computed tomography: an in vitro study.
Oral Surg Oral Med Oral Pathol Oral Radiol. 2015 Jul;120(1):69-77. doi: 10.1016/j.oooo.2015.04.006. Epub 2015 Apr 24.
6
Novel digital imaging techniques to assess the outcome in oral rehabilitation with dental implants: a narrative review.
Clin Oral Implants Res. 2015 Sep;26 Suppl 11:86-96. doi: 10.1111/clr.12616. Epub 2015 May 26.
7
Effective dose of dental CBCT-a meta analysis of published data and additional data for nine CBCT units.
Dentomaxillofac Radiol. 2015;44(1):20140197. doi: 10.1259/dmfr.20140197.
9
Computer technology applications in surgical implant dentistry: a systematic review.
Int J Oral Maxillofac Implants. 2014;29 Suppl:25-42. doi: 10.11607/jomi.2014suppl.g1.2.
10
Accuracy of CBCT images in the assessment of buccal marginal alveolar peri-implant defects: effect of field of view.
Dentomaxillofac Radiol. 2014;43(4):20130332. doi: 10.1259/dmfr.20130332. Epub 2014 Mar 20.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验