Bohner Lauren O L, Tortamano Pedro, Marotti Juliana
1 Department of Prosthodontics, School of Dentistry, University of São Paulo, São Paulo, Brazil.
2 Department of Prosthodontics and Biomaterials, Center for Implantology, University Hospital RWTH Aachen, Aachen, Germany.
Dentomaxillofac Radiol. 2017 Jul;46(5):20160377. doi: 10.1259/dmfr.20160377. Epub 2017 Mar 23.
The aim of this study was to determine the accuracy of linear measurements around dental implants when using CBCT unit devices presenting different exposure parameters.
Dental implants (n = 18) were installed in the maxilla of human dry skulls, and images were obtained using two CBCT devices: G1-Care Stream 9300 (70 kVp, 6.3 mA, voxel size 0.18 mm, field of view 8 × 8 cm; Carestream Health, Rochester, NY) and G2-R100 Veraview (75 kVp, 7.0 mA, voxel size 0.125 mm, field of view 8 × 8 cm; J Morita, Irvine, CA). Measurements of bone thickness were performed at three points located (A) in the most apical portion of the implant, (B) 5 mm above the apical point and (C) in the implant platform. Afterwards, values were compared with real measurements obtained by an optical microscopy [control group (CG)]. Data were statistically analyzed with the significance level of p ≤ 0.05.
There was no statistical difference for the mean values of bone thickness on Point A (CG: 4.85 ± 2.25 mm, G1: 4.19 ± 1.68 mm, G2: 4.15 ± 1.75 mm), Point B (CG: 1.50 ± 0.84 mm, G1: 1.61 ± 1.27 mm; G2: 1.68 ± 0.82 mm) and Point C (CG: 1.78 ± 1.33 mm, G1: 1.80 ± 1.09 mm; G2: 1.64 ± 1.11 mm). G1 and G2 differed in bone thickness by approximately 0.76 mm for Point A, 0.36 mm for Point B and 0.08 mm for Point C. A lower intraclass variability was identified for CG (Point A = 0.20 ± 0.25; Point B = 0.15 ± 0.20; Point C = 0.06 ± 0.05 mm) in comparison with G1 (Point A = 0.56 ± 0.52; Point B = 0.48 ± 0.50; Point C = 0.47 ± 0.56 mm) and G2 (Point A = 0.57 ± 0.51; Point B = 0.46 ± 0.46; Point C = 0.36 ± 0.31 mm).
CBCT devices showed acceptable accuracy for linear measurements around dental implants, despite the exposure parameters used.
本研究的目的是确定使用具有不同曝光参数的锥形束计算机断层扫描(CBCT)设备时,牙种植体周围线性测量的准确性。
将18颗牙种植体植入人类干燥颅骨的上颌骨中,并使用两台CBCT设备获取图像:G1-锐珂9300(70千伏峰值,6.3毫安,体素大小0.18毫米,视野8×8厘米;锐珂医疗,纽约州罗切斯特)和G2-R100 Veraview(75千伏峰值,7.0毫安,体素大小0.125毫米,视野8×8厘米;日本森田公司,加利福尼亚州欧文)。在位于种植体最根尖部分的三个点(A)、根尖点上方5毫米处的点(B)以及种植体平台处的点(C)进行骨厚度测量。之后,将测量值与通过光学显微镜获得的实际测量值进行比较[对照组(CG)]。数据采用显著性水平p≤0.05进行统计学分析。
点A(CG:4.85±2.25毫米,G1:4.19±1.68毫米,G2:4.15±1.75毫米)、点B(CG:1.50±0.84毫米,G1:1.61±1.27毫米;G2:1.68±0.82毫米)和点C(CG:1.78±1.33毫米,G1:1.80±1.09毫米;G2:1.64±1.11毫米)处的骨厚度平均值无统计学差异。G1和G2在点A处的骨厚度差异约为0.76毫米,点B处为0.36毫米,点C处为0.08毫米。与G1(点A = 0. — 0.52;点B = 0.48±0.50;点C = 0.47±0.56毫米)和G2(点A = 0.57±0.51;点B = 0.46±0.46;点C = 0.36±0.31毫米)相比,CG的组内变异性较低(点A = 0.20±0.25;点B = 0.15±0.20;点C = 0.06±0.05毫米)。
尽管使用了不同的曝光参数,但CBCT设备在牙种植体周围线性测量方面显示出可接受的准确性。