Santamaria L, James C
Annu Int Conf IEEE Eng Med Biol Soc. 2016 Aug;2016:371-374. doi: 10.1109/EMBC.2016.7590717.
Synchronization and distributed functional networks have been used with success in different areas of engineering. In this paper we use the synchronization information from electroencephalogram (EEG) channels through the Phase Locking Value (PLV) as a potential classification method for a Brain Computer Interface (BCI); this achieved using emotional schematic faces as stimuli in a motor imagery (MI) task. Based on the variations of the PLV values for each proposed task and for each participant, the principal channel pairs are identified. Selected channel pairs, corresponding with the accomplished task, present PLV patterns similarly to Evoked Potentials (ERS/ERD) which are widely used as classification features for MI based BCI.
同步和分布式功能网络已成功应用于不同的工程领域。在本文中,我们通过锁相值(PLV)使用来自脑电图(EEG)通道的同步信息,作为脑机接口(BCI)的一种潜在分类方法;这是通过在运动想象(MI)任务中使用情感示意图面孔作为刺激来实现的。基于每个提议任务和每个参与者的PLV值变化,识别出主要通道对。与完成的任务相对应的选定通道对呈现出与事件相关电位(ERS/ERD)类似的PLV模式,而ERS/ERD被广泛用作基于MI的BCI的分类特征。