Suppr超能文献

Mu-Beta 事件相关(去)同步和 EEG 分类在基于运动想象脑-机接口中对左-右脚背屈运动想象的左右脚。

Mu-Beta event-related (de)synchronization and EEG classification of left-right foot dorsiflexion kinaesthetic motor imagery for BCI.

机构信息

School of Engineering, RMIT University, Melbourne, VIC, Australia.

出版信息

PLoS One. 2020 Mar 17;15(3):e0230184. doi: 10.1371/journal.pone.0230184. eCollection 2020.

Abstract

The left and right foot representation area is located within the interhemispheric fissure of the sensorimotor cortex and share spatial proximity. This makes it difficult to visualize the cortical lateralization of event-related (de)synchronization (ERD/ERS) during left and right foot motor imageries. The aim of this study is to investigate the possibility of using ERD/ERS in the mu, low beta, and high beta bandwidth, during left and right foot dorsiflexion kinaesthetic motor imageries (KMI), as unilateral control commands for a brain-computer interface (BCI). EEG was recorded from nine healthy participants during cue-based left-right foot dorsiflexion KMI tasks. The features were analysed for common average and bipolar references. With each reference, mu and beta band-power features were analysed using time-frequency (TF) maps, scalp topographies, and average time course for ERD/ERS. The cortical lateralization of ERD/ERS, during left and right foot KMI, was confirmed. Statistically significant features were classified using LDA, SVM, and KNN model, and evaluated using the area under ROC curves. An increase in high beta power following the end of KMI for both tasks was recorded, from right and left hemispheres, respectively, at the vertex. The single trial analysis and classification models resulted in high discrimination accuracies, i.e. maximum 83.4% for beta ERS, 79.1% for beta ERD, and 74.0% for mu ERD. With each model the features performed above the statistical chance level of 2-class discrimination for a BCI. Our findings indicate these features can evoke left-right differences in single EEG trials. This suggests that any BCI employing unilateral foot KMI can attain classification accuracy suitable for practical implementation. Given results stipulate the novel utilization of mu and beta as independent control features for discrimination of bilateral foot KMI in a BCI.

摘要

左右脚的代表区域位于感觉运动皮层的大脑两半球裂之间,空间位置相近。这使得在进行左右脚运动想象时,很难可视化事件相关去同步(ERD)/同步(ERS)的皮质侧化。本研究旨在探讨在左右脚背屈运动想象(KMI)时,使用 ERD/ERS 在 mu、低 beta 和高 beta 带宽中的可能性,作为脑-机接口(BCI)的单侧控制命令。本研究记录了 9 名健康参与者在基于线索的左右脚背屈 KMI 任务期间的 EEG。对共同平均和双极参考的特征进行了分析。对于每个参考,使用时频(TF)图、头皮地形图和 ERD/ERS 的平均时间过程分析 mu 和 beta 频带功率特征。在左右脚 KMI 期间,证实了 ERD/ERS 的皮质侧化。使用 LDA、SVM 和 KNN 模型对具有统计学意义的特征进行分类,并使用 ROC 曲线下面积进行评估。在两种任务中,在 KMI 结束后,右侧和左侧半球的顶点分别记录到高 beta 功率增加。单试分析和分类模型得到了较高的判别准确率,即 beta ERS 的最大值为 83.4%,beta ERD 的最大值为 79.1%,mu ERD 的最大值为 74.0%。对于每个模型,特征的表现均高于 BCI 2 类判别统计机会水平。我们的研究结果表明,这些特征可以在单次 EEG 试验中引起左右差异。这表明,任何采用单侧脚 KMI 的 BCI 都可以达到适合实际应用的分类准确性。鉴于结果规定了 mu 和 beta 作为 BCI 中双边脚 KMI 区分的独立控制特征的新用途。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验