IEEE Trans Neural Syst Rehabil Eng. 2020 Dec;28(12):3051-3062. doi: 10.1109/TNSRE.2020.3039331. Epub 2021 Jan 28.
Motor Imagery (MI)-based Brain Computer Interface (BCI) system is a potential technology for active neurorehabilitation of stroke patients by complementing the conventional passive rehabilitation methods. Research to date mainly focused on classifying left vs. right hand/foot MI of stroke patients. Though a very few studies have reported decoding imagined hand movement directions using electroencephalogram (EEG)-based BCI, the experiments were conducted on healthy subjects. Our work analyzes MI-based brain cortical activity from EEG signals and decodes the imagined hand movement directions in stroke patients. The decoded direction (left vs. right) of hand movement imagination is used to provide control commands to a motorized arm support on which patient's affected (paralyzed) arm is placed. This enables the patient to move his/her stroke-affected hand towards the intended (imagined) direction that aids neuroplasticity in the brain. The synchronization measure called Phase Locking Value (PLV), extracted from EEG, is the neuronal signature used to decode the directional movement of the MI task. Event-related desynchronization/synchronization (ERD/ERS) analysis on Mu and Beta frequency bands of EEG is done to select the time bin corresponding to the MI task. The dissimilarities between the two directions of MI tasks are identified by selecting the most significant channel pairs that provided maximum difference in PLV features. The training protocol has an initial calibration session followed by a feedback session with 50 trials of MI task in each session. The feedback session extracts PLV features corresponding to most significant channel pairs which are identified in the calibration session and is used to predict the direction of MI task in left/right direction. An average MI direction classification accuracy of 74.44% is obtained in performing the training protocol and 68.63% from the prediction protocol during feedback session on 16 stroke patients.
基于运动想象 (MI) 的脑机接口 (BCI) 系统是一种通过补充传统被动康复方法来实现中风患者主动神经康复的潜在技术。迄今为止的研究主要集中在手/脚 MI 的左右分类上。尽管有极少数研究报告了使用基于脑电图 (EEG) 的 BCI 解码想象中的手运动方向,但这些实验是在健康受试者身上进行的。我们的工作分析了基于 MI 的大脑皮层活动从 EEG 信号中,并解码中风患者的想象中的手运动方向。想象中的手运动的解码方向(左/右)用于为放置在患者患病(瘫痪)手臂上的机动臂支撑提供控制命令。这使患者能够将其患病的手移向预期(想象)的方向,从而促进大脑中的神经可塑性。从 EEG 中提取的称为相位锁定值 (PLV) 的同步测量是用于解码 MI 任务的方向运动的神经元特征。对 EEG 的 Mu 和 Beta 频带进行事件相关去同步/同步 (ERD/ERS) 分析,以选择对应于 MI 任务的时间-bin。通过选择提供 PLV 特征最大差异的最显著通道对来识别 MI 任务的两个方向之间的差异。训练协议有一个初始校准会话,然后是一个反馈会话,每个会话有 50 次 MI 任务。反馈会话提取对应于在校准会话中确定的最显著通道对的 PLV 特征,并用于预测 MI 任务在左/右方向的方向。在 16 名中风患者中,通过执行训练协议获得了 74.44%的平均 MI 方向分类准确性,并且在反馈会话中的预测协议中获得了 68.63%的分类准确性。