Suppr超能文献

使用点扩散函数估计和非局部正则化对扫描电子显微镜图像进行贝叶斯反卷积

Bayesian deconvolution of scanning electron microscopy images using point-spread function estimation and non-local regularization.

作者信息

Roels Joris, Aelterman Jan, De Vylder Jonas, Saeys Yvan, Philips Wilfried

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2016 Aug;2016:443-447. doi: 10.1109/EMBC.2016.7590735.

Abstract

Microscopy is one of the most essential imaging techniques in life sciences. High-quality images are required in order to solve (potentially life-saving) biomedical research problems. Many microscopy techniques do not achieve sufficient resolution for these purposes, being limited by physical diffraction and hardware deficiencies. Electron microscopy addresses optical diffraction by measuring emitted or transmitted electrons instead of photons, yielding nanometer resolution. Despite pushing back the diffraction limit, blur should still be taken into account because of practical hardware imperfections and remaining electron diffraction. Deconvolution algorithms can remove some of the blur in post-processing but they depend on knowledge of the point-spread function (PSF) and should accurately regularize noise. Any errors in the estimated PSF or noise model will reduce their effectiveness. This paper proposes a new procedure to estimate the lateral component of the point spread function of a 3D scanning electron microscope more accurately. We also propose a Bayesian maximum a posteriori deconvolution algorithm with a non-local image prior which employs this PSF estimate and previously developed noise statistics. We demonstrate visual quality improvements and show that applying our method improves the quality of subsequent segmentation steps.

摘要

显微镜学是生命科学中最基本的成像技术之一。为了解决(可能关乎挽救生命的)生物医学研究问题,需要高质量的图像。许多显微镜技术由于受到物理衍射和硬件缺陷的限制,无法达到足够的分辨率以满足这些目的。电子显微镜通过测量发射或透射的电子而非光子来解决光学衍射问题,从而实现纳米级分辨率。尽管突破了衍射极限,但由于实际硬件的不完善以及残留的电子衍射,模糊现象仍需考虑。去卷积算法可以在后期处理中去除一些模糊,但它们依赖于点扩散函数(PSF)的知识,并且需要准确地对噪声进行正则化。估计的PSF或噪声模型中的任何误差都会降低它们的有效性。本文提出了一种新的方法,以更准确地估计三维扫描电子显微镜点扩散函数的横向分量。我们还提出了一种具有非局部图像先验的贝叶斯最大后验去卷积算法,该算法采用了这种PSF估计和先前开发的噪声统计信息。我们展示了视觉质量的提升,并表明应用我们的方法可以提高后续分割步骤的质量。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验