Suppr超能文献

利用从数字图像中广泛提取特征实现黑色素瘤的自动检测。

Automatic detection of melanoma using broad extraction of features from digital images.

作者信息

Jafari M H, Samavi S, Karimi N, Soroushmehr S M R, Ward K, Najarian K

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2016 Aug;2016:1357-1360. doi: 10.1109/EMBC.2016.7590959.

Abstract

Automatic and reliable diagnosis of skin cancer, as a smartphone application, is of great interest. Among different types of skin cancers, melanoma is the most dangerous one which causes most deaths. Meanwhile, melanoma is curable if it were diagnosed in its early stages. In this paper we propose an efficient system for prescreening of pigmented skin lesions for malignancy using general-purpose digital cameras. These images can be captured by a smartphone or a digital camera. This could be beneficial in different applications, such as computer aided diagnosis and telemedicine applications. It could assist dermatologists, or smartphone users, evaluate risk of suspicious moles. The proposed method enhances borders and extracts a broad set of dermatologically important features. These discriminative features allow classification of lesions into two groups of melanoma and benign. This method is computationally appropriate as a smartphone application. Experimental results show that our proposed method is superior in diagnosis accuracy compared to state-of-the-art methods.

摘要

作为一种智能手机应用程序,实现皮肤癌的自动可靠诊断具有重大意义。在不同类型的皮肤癌中,黑色素瘤最为危险,导致的死亡人数最多。与此同时,如果黑色素瘤能在早期被诊断出来,是可以治愈的。在本文中,我们提出了一种高效的系统,用于使用通用数码相机对色素沉着性皮肤病变进行恶性肿瘤预筛查。这些图像可以通过智能手机或数码相机拍摄。这在不同的应用中可能会很有帮助,比如计算机辅助诊断和远程医疗应用。它可以帮助皮肤科医生或智能手机用户评估可疑痣的风险。所提出的方法增强了边界,并提取了一系列广泛的重要皮肤学特征。这些具有区分性的特征可将病变分为黑色素瘤和良性两组。作为一种智能手机应用程序,该方法在计算上是合适的。实验结果表明,与现有方法相比,我们提出的方法在诊断准确性方面更具优势。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验