Suppr超能文献

基于深度卷积神经网络集成的皮肤损伤分类。

Skin lesion classification with ensembles of deep convolutional neural networks.

机构信息

Faculty of Informatics, University of Debrecen, POB 400, 4002 Debrecen, Hungary.

出版信息

J Biomed Inform. 2018 Oct;86:25-32. doi: 10.1016/j.jbi.2018.08.006. Epub 2018 Aug 10.

Abstract

Skin cancer is a major public health problem with over 123,000 newly diagnosed cases worldwide in every year. Melanoma is the deadliest form of skin cancer, responsible for over 9000 deaths in the United States each year. Thus, reliable automatic melanoma screening systems would provide a great help for clinicians to detect the malignant skin lesions as early as possible. In the last five years, the efficiency of deep learning-based methods increased dramatically and their performances seem to outperform conventional image processing methods in classification tasks. However, this type of machine learning-based approaches have a main drawback, namely they require thousands of labeled images per classes for their training. In this paper, we investigate how we can create an ensemble of deep convolutional neural networks to improve further their individual accuracies in the task of classifying dermoscopy images into the three classes melanoma, nevus, and seborrheic keratosis when we have no opportunity to train them on adequate number of annotated images. To achieve high classification accuracy, we fuse the outputs of the classification layers of four different deep neural network architectures. More specifically, we propose the aggregation of robust convolutional neural networks (CNNs) into one framework, where the final classification is achieved based on the weighted output of the member CNNs. For aggregation, we consider different fusion-based methods and select the best performing one for this problem. Our experimental results also prove that the creation of an ensemble of different neural networks is a meaningful approach, since each of the applied fusion strategies outperforms the individual networks regarding classification accuracy. The average area under the receiver operating characteristic curve has been found to be 0.891 for the 3-class classification task. For an objective evaluation of our approach, we have tested its performance on the official test database of the IEEE International Symposium on Biomedical Imaging (ISBI) 2017 challenge on Skin Lesion Analysis Towards Melanoma Detection dedicated to skin cancer recognition.

摘要

皮肤癌是一个主要的公共卫生问题,每年全球有超过 123000 例新诊断病例。黑色素瘤是最致命的皮肤癌形式,每年导致美国超过 9000 人死亡。因此,可靠的自动黑色素瘤筛查系统将为临床医生提供极大的帮助,以便尽早发现恶性皮肤病变。在过去五年中,基于深度学习的方法的效率显著提高,并且它们在分类任务中的性能似乎优于传统的图像处理方法。然而,这种基于机器学习的方法有一个主要的缺点,即它们的训练需要每个类别数千张标记图像。在本文中,我们研究了当我们没有机会在足够数量的注释图像上对其进行训练时,如何创建一个深度卷积神经网络的集合,以进一步提高它们在将皮肤镜图像分类为黑色素瘤、痣和脂溢性角化病这三个类别的任务中的个体准确性。为了实现高分类准确性,我们融合了四个不同深度神经网络结构的分类层的输出。更具体地说,我们提出了将稳健的卷积神经网络(CNN)聚合到一个框架中,其中最终分类是基于成员 CNN 的加权输出实现的。对于聚合,我们考虑了不同的融合方法,并选择了最适合这个问题的方法。我们的实验结果也证明了创建不同神经网络的集合是一种有意义的方法,因为应用的融合策略中的每一个都在分类准确性方面优于单个网络。对于 3 类分类任务,接收器操作特征曲线下的平均面积被发现为 0.891。为了对我们的方法进行客观评估,我们在 2017 年 IEEE 国际生物医学成像研讨会(ISBI)皮肤病变分析皮肤癌识别挑战赛的官方测试数据库上测试了其性能。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验