Suppr超能文献

在脑机接口中利用尖峰活动和局部场电位进行空闲状态分类。

Idle state classification using spiking activity and local field potentials in a brain computer interface.

作者信息

Williams Jordan J, Tien Rex N, Inoue Yoh, Schwartz Andrew B

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2016 Aug;2016:1572-1575. doi: 10.1109/EMBC.2016.7591012.

Abstract

Previous studies of intracortical brain-computer interfaces (BCIs) have often focused on or compared the use of spiking activity and local field potentials (LFPs) for decoding kinematic movement parameters. Conversely, using these signals to detect the initial intention to use a neuroprosthetic device or not has remained a relatively understudied problem. In this study, we examined the relative performance of spiking activity and LFP signals in detecting discrete state changes in attention regarding a user's desire to actively control a BCI device. Preliminary offline results suggest that the beta and high gamma frequency bands of LFP activity demonstrated a capacity for discriminating idle/active BCI control states equal to or greater than firing rate activity on the same channel. Population classifier models using either signal modality demonstrated an indistinguishably high degree of accuracy in decoding rest periods from active BCI reach periods as well as other portions of active BCI task trials. These results suggest that either signal modality may be used to reliably detect discrete state changes on a fine time scale for the purpose of gating neural prosthetic movements.

摘要

以往对皮层内脑机接口(BCI)的研究常常聚焦于或比较使用尖峰活动和局部场电位(LFP)来解码运动学运动参数。相反,利用这些信号来检测是否有使用神经假体装置的初始意图仍然是一个相对较少研究的问题。在本研究中,我们检验了尖峰活动和LFP信号在检测与用户主动控制BCI装置的愿望相关的注意力离散状态变化方面的相对性能。初步离线结果表明,LFP活动的β和高γ频段在区分空闲/主动BCI控制状态方面表现出的能力等同于或大于同一通道上的发放率活动。使用任一信号模态的群体分类器模型在从主动BCI到达期以及主动BCI任务试验的其他部分解码休息期时,都表现出了难以区分的高精度。这些结果表明,为了控制神经假体运动,任一信号模态都可用于在精细时间尺度上可靠地检测离散状态变化。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验