Suppr超能文献

从经典运动想象到复杂运动意图解码:非侵入性格拉茨脑机接口方法。

From classic motor imagery to complex movement intention decoding: The noninvasive Graz-BCI approach.

作者信息

Müller-Putz G R, Schwarz A, Pereira J, Ofner P

机构信息

Graz University of Technology, Institute of Neural Engineering, Graz, Austria.

Graz University of Technology, Institute of Neural Engineering, Graz, Austria.

出版信息

Prog Brain Res. 2016;228:39-70. doi: 10.1016/bs.pbr.2016.04.017. Epub 2016 May 31.

Abstract

In this chapter, we give an overview of the Graz-BCI research, from the classic motor imagery detection to complex movement intentions decoding. We start by describing the classic motor imagery approach, its application in tetraplegic end users, and the significant improvements achieved using coadaptive brain-computer interfaces (BCIs). These strategies have the drawback of not mirroring the way one plans a movement. To achieve a more natural control-and to reduce the training time-the movements decoded by the BCI need to be closely related to the user's intention. Within this natural control, we focus on the kinematic level, where movement direction and hand position or velocity can be decoded from noninvasive recordings. First, we review movement execution decoding studies, where we describe the decoding algorithms, their performance, and associated features. Second, we describe the major findings in movement imagination decoding, where we emphasize the importance of estimating the sources of the discriminative features. Third, we introduce movement target decoding, which could allow the determination of the target without knowing the exact movement-by-movement details. Aside from the kinematic level, we also address the goal level, which contains relevant information on the upcoming action. Focusing on hand-object interaction and action context dependency, we discuss the possible impact of some recent neurophysiological findings in the future of BCI control. Ideally, the goal and the kinematic decoding would allow an appropriate matching of the BCI to the end users' needs, overcoming the limitations of the classic motor imagery approach.

摘要

在本章中,我们将概述格拉茨脑机接口(Graz-BCI)的研究,从经典的运动想象检测到复杂运动意图的解码。我们首先描述经典的运动想象方法、其在四肢瘫痪终端用户中的应用,以及使用协同自适应脑机接口(BCI)所取得的显著改进。这些策略的缺点是没有反映出人们计划运动的方式。为了实现更自然的控制并减少训练时间,BCI解码的运动需要与用户意图密切相关。在这种自然控制中,我们关注运动学层面,在该层面可以从无创记录中解码运动方向、手部位置或速度。首先,我们回顾运动执行解码研究,在其中描述解码算法、它们的性能以及相关特征。其次,我们描述运动想象解码的主要发现,在其中强调估计判别特征来源的重要性。第三,我们介绍运动目标解码,它可以在不知道逐个运动的确切细节的情况下确定目标。除了运动学层面,我们还讨论目标层面,该层面包含有关即将进行的动作的相关信息。关注手部与物体的交互以及动作上下文依赖性,我们讨论一些近期神经生理学发现对未来BCI控制可能产生的影响。理想情况下,目标解码和运动学解码将使BCI能够适当满足终端用户的需求,克服经典运动想象方法的局限性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验