Hezarjaribi Niloofar, Reynolds Cody A, Miller Drew T, Chaytor Naomi, Ghasemzadeh Hassan
Annu Int Conf IEEE Eng Med Biol Soc. 2016 Aug;2016:1991-1994. doi: 10.1109/EMBC.2016.7591115.
Diet and physical activity are important lifestyle and behavioral factors in self-management and prevention of many chronic diseases. Mobile sensors such as accelerometers have been used in the past to objectively measure physical activity or detect eating time. Diet monitoring, however, still relies on self-recorded data by end users where individuals use mobile devices for recording nutrition intake by either entering text or taking images. Such approaches have shown low adherence in technology adoption and achieve only moderate accuracy. In this paper, we propose development and validation of Speech-to-Nutrient-Information (S2NI), a comprehensive nutrition monitoring system that combines speech processing, natural language processing, and text mining in a unified platform to extract nutrient information such as calorie intake from spoken data. After converting the voice data to text, we identify food name and portion size information within the text. We then develop a tiered matching algorithm to search the food name in our nutrition database and to accurately compute calorie intake. Due to its pervasive nature and ease of use, S2NI enables users to report their diet routine more frequently and at anytime through their smartphone. We evaluate S2NI using real data collected with 10 participants. Our experimental results show that S2NI achieves 80.6% accuracy in computing calorie intake.
饮食和身体活动是自我管理和预防多种慢性病的重要生活方式及行为因素。过去,诸如加速度计等移动传感器已被用于客观测量身体活动或检测进食时间。然而,饮食监测仍依赖终端用户自行记录的数据,即个人使用移动设备通过输入文本或拍照来记录营养摄入情况。此类方法在技术采用方面显示出较低的依从性,且仅能达到中等精度。在本文中,我们提出开发并验证语音到营养信息(S2NI)系统,这是一个综合营养监测系统,它在统一平台上结合了语音处理、自然语言处理和文本挖掘技术,以从语音数据中提取诸如卡路里摄入量等营养信息。在将语音数据转换为文本后,我们在文本中识别食物名称和份量信息。然后,我们开发了一种分层匹配算法,在我们的营养数据库中搜索食物名称并准确计算卡路里摄入量。由于其普遍性和易用性,S2NI使用户能够通过智能手机更频繁且随时报告他们的日常饮食。我们使用10名参与者收集的真实数据对S2NI进行评估。我们的实验结果表明,S2NI在计算卡路里摄入量方面的准确率达到了80.6%。