Suppr超能文献

基于局部主动轮廓模型(ACM)和随机厨房水槽的分类器在乳腺组织病理学图像中检测有丝分裂细胞核

Detection of mitotic nuclei in breast histopathology images using localized ACM and Random Kitchen Sink based classifier.

作者信息

Beevi K Sabeena, Nair Madhu S, Bindu G R

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2016 Aug;2016:2435-2439. doi: 10.1109/EMBC.2016.7591222.

Abstract

The exact measure of mitotic nuclei is a crucial parameter in breast cancer grading and prognosis. This can be achieved by improving the mitotic detection accuracy by careful design of segmentation and classification techniques. In this paper, segmentation of nuclei from breast histopathology images are carried out by Localized Active Contour Model (LACM) utilizing bio-inspired optimization techniques in the detection stage, in order to handle diffused intensities present along object boundaries. Further, the application of a new optimal machine learning algorithm capable of classifying strong non-linear data such as Random Kitchen Sink (RKS), shows improved classification performance. The proposed method has been tested on Mitosis detection in breast cancer histological images (MITOS) dataset provided for MITOS-ATYPIA CONTEST 2014. The proposed framework achieved 95% recall, 98% precision and 96% F-score.

摘要

有丝分裂细胞核的精确测量是乳腺癌分级和预后的关键参数。这可以通过精心设计分割和分类技术来提高有丝分裂检测精度来实现。在本文中,利用生物启发优化技术,通过局部主动轮廓模型(LACM)在检测阶段对乳腺组织病理学图像中的细胞核进行分割,以处理沿物体边界存在的扩散强度。此外,应用一种能够对强非线性数据进行分类的新型最优机器学习算法,如随机厨房水槽(RKS),显示出改进的分类性能。所提出的方法已在为2014年MITOS-ATYPIA竞赛提供的乳腺癌组织学图像有丝分裂检测(MITOS)数据集中进行了测试。所提出的框架实现了95%的召回率、98%的精确率和96%的F值。

相似文献

1
Detection of mitotic nuclei in breast histopathology images using localized ACM and Random Kitchen Sink based classifier.
Annu Int Conf IEEE Eng Med Biol Soc. 2016 Aug;2016:2435-2439. doi: 10.1109/EMBC.2016.7591222.
2
A Multi-Classifier System for Automatic Mitosis Detection in Breast Histopathology Images Using Deep Belief Networks.
IEEE J Transl Eng Health Med. 2017 Apr 25;5:4300211. doi: 10.1109/JTEHM.2017.2694004. eCollection 2017.
3
Multi CNN based automatic detection of mitotic nuclei in breast histopathological images.
Comput Biol Med. 2023 May;158:106815. doi: 10.1016/j.compbiomed.2023.106815. Epub 2023 Mar 22.
4
Stacked Sparse Autoencoder (SSAE) for Nuclei Detection on Breast Cancer Histopathology Images.
IEEE Trans Med Imaging. 2016 Jan;35(1):119-30. doi: 10.1109/TMI.2015.2458702. Epub 2015 Jul 20.
5
MaskMitosis: a deep learning framework for fully supervised, weakly supervised, and unsupervised mitosis detection in histopathology images.
Med Biol Eng Comput. 2020 Jul;58(7):1603-1623. doi: 10.1007/s11517-020-02175-z. Epub 2020 May 22.
6
Automated Segmentation of Nuclei in Breast Cancer Histopathology Images.
PLoS One. 2016 Sep 20;11(9):e0162053. doi: 10.1371/journal.pone.0162053. eCollection 2016.
7
Automated knowledge-assisted mitosis cells detection framework in breast histopathology images.
Math Biosci Eng. 2022 Jan;19(2):1721-1745. doi: 10.3934/mbe.2022081. Epub 2021 Dec 15.
8
Weakly supervised mitosis detection in breast histopathology images using concentric loss.
Med Image Anal. 2019 Apr;53:165-178. doi: 10.1016/j.media.2019.01.013. Epub 2019 Feb 15.
10

引用本文的文献

1
Nuclear morphometrics and chromatin condensation patterns as disease biomarkers using a mobile microscope.
PLoS One. 2019 Jul 17;14(7):e0218757. doi: 10.1371/journal.pone.0218757. eCollection 2019.
2
A Multi-Classifier System for Automatic Mitosis Detection in Breast Histopathology Images Using Deep Belief Networks.
IEEE J Transl Eng Health Med. 2017 Apr 25;5:4300211. doi: 10.1109/JTEHM.2017.2694004. eCollection 2017.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验