Beevi K Sabeena, Nair Madhu S, Bindu G R
Annu Int Conf IEEE Eng Med Biol Soc. 2016 Aug;2016:2435-2439. doi: 10.1109/EMBC.2016.7591222.
The exact measure of mitotic nuclei is a crucial parameter in breast cancer grading and prognosis. This can be achieved by improving the mitotic detection accuracy by careful design of segmentation and classification techniques. In this paper, segmentation of nuclei from breast histopathology images are carried out by Localized Active Contour Model (LACM) utilizing bio-inspired optimization techniques in the detection stage, in order to handle diffused intensities present along object boundaries. Further, the application of a new optimal machine learning algorithm capable of classifying strong non-linear data such as Random Kitchen Sink (RKS), shows improved classification performance. The proposed method has been tested on Mitosis detection in breast cancer histological images (MITOS) dataset provided for MITOS-ATYPIA CONTEST 2014. The proposed framework achieved 95% recall, 98% precision and 96% F-score.
有丝分裂细胞核的精确测量是乳腺癌分级和预后的关键参数。这可以通过精心设计分割和分类技术来提高有丝分裂检测精度来实现。在本文中,利用生物启发优化技术,通过局部主动轮廓模型(LACM)在检测阶段对乳腺组织病理学图像中的细胞核进行分割,以处理沿物体边界存在的扩散强度。此外,应用一种能够对强非线性数据进行分类的新型最优机器学习算法,如随机厨房水槽(RKS),显示出改进的分类性能。所提出的方法已在为2014年MITOS-ATYPIA竞赛提供的乳腺癌组织学图像有丝分裂检测(MITOS)数据集中进行了测试。所提出的框架实现了95%的召回率、98%的精确率和96%的F值。