Suppr超能文献

基于迁移学习的深度卷积神经网络用于乳腺癌组织病理学图像中有丝分裂的分割与检测

Transfer learning based deep CNN for segmentation and detection of mitoses in breast cancer histopathological images.

作者信息

Wahab Noorul, Khan Asifullah, Lee Yeon Soo

机构信息

Pattern Recognition Lab, Department of Computer and Information Sciences, Pakistan Institute of Engineering and Applied Sciences, Nilore, Islamabad.

Deep Learning Lab, Centre for Mathematical Sciences, Pakistan Institute of Engineering and Applied Sciences, Nilore, Islamabad.

出版信息

Microscopy (Oxf). 2019 Jun 1;68(3):216-233. doi: 10.1093/jmicro/dfz002.

Abstract

Segmentation and detection of mitotic nuclei is a challenging task. To address this problem, a Transfer Learning based fast and accurate system is proposed. To give the classifier a balanced dataset, this work exploits the concept of Transfer Learning by first using a pre-trained convolutional neural network (CNN) for segmentation, and then another Hybrid-CNN (with Weights Transfer and custom layers) for classification of mitoses. First, mitotic nuclei are automatically annotated, based on the ground truth centroids. The segmentation module then segments mitotic nuclei and also produces some false positives. Finally, the detection module is trained on the patches from the segmentation module and performs the final detection. Fine-tuning based Transfer Learning reduced training time, provided good initial weights, and improved the detection rate with F-measure of 0.713 and 76% area under the precision-recall curve for the challenging task of mitosis detection.

摘要

有丝分裂细胞核的分割与检测是一项具有挑战性的任务。为了解决这个问题,提出了一种基于迁移学习的快速准确系统。为了给分类器提供一个平衡的数据集,这项工作利用迁移学习的概念,首先使用预训练的卷积神经网络(CNN)进行分割,然后使用另一个混合CNN(具有权重迁移和自定义层)进行有丝分裂分类。首先,基于真实质心自动标注有丝分裂细胞核。分割模块随后对有丝分裂细胞核进行分割,并产生一些误报。最后,检测模块在来自分割模块的补丁上进行训练,并执行最终检测。基于微调的迁移学习减少了训练时间,提供了良好的初始权重,并提高了检测率,在有丝分裂检测这一具有挑战性的任务中,F值为0.713,精确率-召回率曲线下面积为76%。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验