Suppr超能文献

基于多阶段深度卷积神经网络的乳腺癌病理图像有丝分裂检测框架。

A multi-phase deep CNN based mitosis detection framework for breast cancer histopathological images.

机构信息

Pattern Recognition Lab, DCIS, Pakistan Institute of Engineering and Applied Sciences (PIEAS), Nilore, Islamabad, 45650, Pakistan.

Deep Learning Lab, Centre for Mathematical Sciences, Pakistan Institute of Engineering and Applied Sciences, (PIEAS), Nilore, Islamabad, 45650, Pakistan.

出版信息

Sci Rep. 2021 Mar 18;11(1):6215. doi: 10.1038/s41598-021-85652-1.

Abstract

The mitotic activity index is a key prognostic measure in tumour grading. Microscopy based detection of mitotic nuclei is a significant overhead and necessitates automation. This work proposes deep CNN based multi-phase mitosis detection framework "MP-MitDet" for mitotic nuclei identification in breast cancer histopathological images. The workflow constitutes: (1) label-refiner, (2) tissue-level mitotic region selection, (3) blob analysis, and (4) cell-level refinement. We developed an automatic label-refiner to represent weak labels with semi-sematic information for training of deep CNNs. A deep instance-based detection and segmentation model is used to explore probable mitotic regions on tissue patches. More probable regions are screened based on blob area and then analysed at cell-level by developing a custom CNN classifier "MitosRes-CNN" to filter false mitoses. The performance of the proposed "MitosRes-CNN" is compared with the state-of-the-art CNNs that are adapted to cell-level discrimination through cross-domain transfer learning and by adding task-specific layers. The performance of the proposed framework shows good discrimination ability in terms of F-score (0.75), recall (0.76), precision (0.71) and area under the precision-recall curve (0.78) on challenging TUPAC16 dataset. Promising results suggest good generalization of the proposed framework that can learn characteristic features from heterogenous mitotic nuclei.

摘要

有丝分裂活动指数是肿瘤分级的一个关键预后指标。基于显微镜的有丝分裂核检测是一项重要的工作,需要自动化。这项工作提出了基于深度卷积神经网络的多阶段有丝分裂检测框架“MP-MitDet”,用于乳腺癌组织病理学图像中有丝分裂核的识别。该工作流程包括:(1)标签精炼器,(2)组织水平的有丝分裂区域选择,(3)斑点分析,和(4)细胞水平的细化。我们开发了一种自动标签精炼器,用于用半语义信息表示弱标签,以训练深度卷积神经网络。深度实例基检测和分割模型用于在组织斑块上探索可能的有丝分裂区域。根据斑点区域筛选出更可能的区域,然后通过开发自定义 CNN 分类器“MitosRes-CNN”在细胞水平进行分析,以滤除假有丝分裂。将提出的“MitosRes-CNN”的性能与经过跨域迁移学习和添加特定任务层以适应细胞水平区分的最新 CNN 进行比较。在具有挑战性的 TUPAC16 数据集上,所提出的框架在 F 分数(0.75)、召回率(0.76)、精度(0.71)和精度-召回率曲线下面积(0.78)方面表现出良好的区分能力。有前途的结果表明,所提出的框架具有良好的泛化能力,可以从异质有丝分裂核中学习特征。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0cb5/7973714/0255b3732ca2/41598_2021_85652_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验