Suppr超能文献

一种基于腕部佩戴式加速度计的体力活动能量消耗统计估计框架。

A statistical estimation framework for energy expenditure of physical activities from a wrist-worn accelerometer.

作者信息

Lohit Suhas, Toledo Meynard John, Buman Matthew P, Turaga Pavan

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2016 Aug;2016:2631-2635. doi: 10.1109/EMBC.2016.7591270.

Abstract

Energy expenditure (EE) estimation from accelerometer-based wearable sensors is important to generate accurate assessment of physical activity (PA) in individuals. Approaches hitherto have mainly focused on using accelerometer data and features extracted from these data to learn a regression model to predict EE directly. In this paper, we propose a novel framework for EE estimation based on statistical estimation theory. Given a test sequence of accelerometer data, the probability distribution on the PA classes is estimated by a classifier and these predictions are used to estimate EE. Experimental evaluation, performed on a large dataset of 152 subjects and 12 activity classes, demonstrates that EE can be estimated accurately using our framework.

摘要

利用基于加速度计的可穿戴传感器估计能量消耗(EE)对于准确评估个体的身体活动(PA)非常重要。迄今为止的方法主要集中在使用加速度计数据以及从这些数据中提取的特征来学习回归模型,以直接预测EE。在本文中,我们基于统计估计理论提出了一种用于EE估计的新颖框架。给定加速度计数据的测试序列,通过分类器估计PA类别的概率分布,并使用这些预测来估计EE。在一个包含152名受试者和12种活动类别的大型数据集上进行的实验评估表明,使用我们的框架可以准确估计EE。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验