Suppr超能文献

PI-Net:一种用于提取拓扑持久性图像的深度学习方法。

PI-Net: A Deep Learning Approach to Extract Topological Persistence Images.

作者信息

Som Anirudh, Choi Hongjun, Ramamurthy Karthikeyan Natesan, Buman Matthew P, Turaga Pavan

机构信息

School of Arts, Media and Engineering, Arizona State University.

School of Electrical, Computer and Energy Engineering, Arizona State University.

出版信息

Conf Comput Vis Pattern Recognit Workshops. 2020 Jun;2020:3639-3648. doi: 10.1109/cvprw50498.2020.00425. Epub 2020 Jul 28.

Abstract

Topological features such as persistence diagrams and their functional approximations like persistence images (PIs) have been showing substantial promise for machine learning and computer vision applications. This is greatly attributed to the robustness topological representations provide against different types of physical nuisance variables seen in real-world data, such as view-point, illumination, and more. However, key bottlenecks to their large scale adoption are computational expenditure and difficulty incorporating them in a differentiable architecture. We take an important step in this paper to mitigate these bottlenecks by proposing a novel one-step approach to generate PIs directly from the input data. We design two separate convolutional neural network architectures, one designed to take in multi-variate time series signals as input and another that accepts multi-channel images as input. We call these networks Signal PI-Net and Image PI-Net respectively. To the best of our knowledge, we are the first to propose the use of deep learning for computing topological features directly from data. We explore the use of the proposed PI-Net architectures on two applications: human activity recognition using tri-axial accelerometer sensor data and image classification. We demonstrate the ease of fusion of PIs in supervised deep learning architectures and speed up of several orders of magnitude for extracting PIs from data. Our code is available at https://github.com/anirudhsom/PI-Net.

摘要

诸如持久图及其功能近似(如持久图像(PI))等拓扑特征在机器学习和计算机视觉应用中已展现出巨大的潜力。这很大程度上归因于拓扑表示对现实世界数据中所见的不同类型物理干扰变量(如视点、光照等)具有鲁棒性。然而,它们大规模应用的关键瓶颈在于计算成本以及将其纳入可微架构的难度。在本文中,我们迈出了重要一步,通过提出一种新颖的一步法直接从输入数据生成持久图像来缓解这些瓶颈。我们设计了两种独立的卷积神经网络架构,一种设计为以多变量时间序列信号作为输入,另一种接受多通道图像作为输入。我们分别将这些网络称为信号PI网络和图像PI网络。据我们所知,我们是首个提出使用深度学习直接从数据计算拓扑特征的。我们在两个应用中探索了所提出的PI网络架构的使用:使用三轴加速度计传感器数据进行人类活动识别以及图像分类。我们展示了持久图像在监督深度学习架构中融合的简便性以及从数据中提取持久图像时几个数量级的加速。我们的代码可在https://github.com/anirudhsom/PI-Net获取。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0ed4/7521829/684a06ba6259/nihms-1605052-f0001.jpg

相似文献

1
PI-Net: A Deep Learning Approach to Extract Topological Persistence Images.PI-Net:一种用于提取拓扑持久性图像的深度学习方法。
Conf Comput Vis Pattern Recognit Workshops. 2020 Jun;2020:3639-3648. doi: 10.1109/cvprw50498.2020.00425. Epub 2020 Jul 28.
9
Autism Classification Using Topological Features and Deep Learning: A Cautionary Tale.利用拓扑特征和深度学习进行自闭症分类:一个警示故事。
Med Image Comput Comput Assist Interv. 2019 Oct;11766:736-744. doi: 10.1007/978-3-030-32248-9_82. Epub 2019 Oct 10.

引用本文的文献

5
Topological Knowledge Distillation for Wearable Sensor Data.用于可穿戴传感器数据的拓扑知识蒸馏
Conf Rec Asilomar Conf Signals Syst Comput. 2022 Oct-Nov;2022:837-842. doi: 10.1109/ieeeconf56349.2022.10052019. Epub 2023 Mar 7.

本文引用的文献

1
Topological Descriptors for Parkinson's Disease Classification and Regression Analysis.用于帕金森病分类和回归分析的拓扑描述符
Annu Int Conf IEEE Eng Med Biol Soc. 2020 Jul;2020:793-797. doi: 10.1109/EMBC44109.2020.9176285.
4
Fully Convolutional Networks for Semantic Segmentation.全卷积网络用于语义分割。
IEEE Trans Pattern Anal Mach Intell. 2017 Apr;39(4):640-651. doi: 10.1109/TPAMI.2016.2572683. Epub 2016 May 24.
8
Persistence diagrams of cortical surface data.皮质表面数据的持久图
Inf Process Med Imaging. 2009;21:386-97. doi: 10.1007/978-3-642-02498-6_32.
10
The human visual cortex.人类视觉皮层。
Annu Rev Neurosci. 2004;27:649-77. doi: 10.1146/annurev.neuro.27.070203.144220.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验