Heredia-Juesas Juan, Thatcher Jeffrey E, Squiers John J, King Darlene, DiMaio J Michael, Martinez-Lorenzo Jose A
Annu Int Conf IEEE Eng Med Biol Soc. 2016 Aug;2016:2893-2896. doi: 10.1109/EMBC.2016.7591334.
Burn debridement is a challenging technique that requires significant skill to identify regions requiring excision and appropriate excision depth. A machine learning tool is being developed in order to assist surgeons by providing a quantitative assessment of burn-injured tissue. Three noninvasive optical imaging techniques capable of distinguishing between four kinds of tissue-healthy skin, viable wound bed, deep burn, and shallow burn-during serial burn debridement in a porcine model are presented in this paper. The combination of all three techniques considerably improves the accuracy of tissue classification, from 0.42 to almost 0.77.
烧伤清创术是一项具有挑战性的技术,需要高超的技能来识别需要切除的区域以及合适的切除深度。目前正在开发一种机器学习工具,通过对烧伤组织进行定量评估来辅助外科医生。本文介绍了三种非侵入性光学成像技术,这些技术能够在猪模型的连续烧伤清创过程中区分四种组织——健康皮肤、有活力的创面床、深度烧伤和浅度烧伤。这三种技术的结合显著提高了组织分类的准确性,从0.42提高到了近0.77。