Suppr超能文献

用于增强对人类损伤的存活与非存活组织鉴别的分类器融合

Merging of Classifiers for Enhancing Viable vs Non-Viable Tissue Discrimination on Human Injuries.

作者信息

Heredia-Juesas Juan, Graham Katherine, Thatcher Jeffrey E, Fan Wensheng, DiMaio J Michael, Martinez-Lorenzo Jose A

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2018 Jul;2018:726-729. doi: 10.1109/EMBC.2018.8512378.

Abstract

Non-invasive optical imaging techniques have been recently proposed for distinguishing between different types of tissue in burns generated in porcine models. These techniques are designed to assist surgeons during the process of burn debridement, to identify regions requiring excision and their appropriate excision depth. This paper presents a machine learning tool for discriminating between Viable and Non- Viable tissues in human injuries. This tool merges a supervised (QDA) with an unsupervised (k-means clustering) classification algorithms. This combination improves the Non-Viable tissue detection in 23.7% with respect to a simple QDA classifier.

摘要

最近有人提出使用非侵入性光学成像技术来区分猪模型烧伤中不同类型的组织。这些技术旨在在烧伤清创过程中协助外科医生,识别需要切除的区域及其适当的切除深度。本文提出了一种用于区分人类损伤中 viable 和 Non-Viable 组织的机器学习工具。该工具将监督式(QDA)与无监督式(k 均值聚类)分类算法相结合。与简单的 QDA 分类器相比,这种组合将 Non-Viable 组织检测率提高了 23.7%。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验