Toreyin Hakan, Hersek Sinan, Teague Caitlin N, Inan Omer T
Annu Int Conf IEEE Eng Med Biol Soc. 2016 Aug;2016:3113-3116. doi: 10.1109/EMBC.2016.7591388.
An algorithm for performing activity classification for a joint health assessment system using acoustical emissions from the knee is presented. The algorithm was refined based on linear acceleration data from the shank and the thigh sampled at 100 Hz/ch and collected from eight healthy subjects performing unloaded flexion-extension and sit-to-stand motions. The algorithm was implemented on a field-programmable gate array (FPGA)-based processor and has been validated in realtime on a subject performing two minutes of activities consisting of flexion-extension, sit-to-stand, and other motions while standing. When an activity is detected, the algorithm generates an enable signal for high throughput data acquisition of knee joint sounds using two airborne microphones (100 kHz/ch) and two single-axis gyroscope and accelerometer pairs (1 kHz/ch). This approach can facilitate energy-efficient recording of joint sound signatures in the context of flexion-extension and sit-to-stand activities from freely-moving subjects throughout the day, potentially providing a means of evaluating rehabilitation status, for example, following acute knee injury.
提出了一种用于关节健康评估系统的活动分类算法,该系统利用来自膝盖的声发射进行评估。该算法基于来自小腿和大腿的线性加速度数据进行了优化,这些数据以100Hz/通道的采样率采集自八名健康受试者,他们进行了无负荷的屈伸和从坐起到站立的动作。该算法在基于现场可编程门阵列(FPGA)的处理器上实现,并已在一名受试者身上进行了实时验证,该受试者进行了两分钟包括屈伸、从坐起到站立以及站立时的其他动作的活动。当检测到一项活动时,该算法会生成一个使能信号,以便使用两个机载麦克风(100kHz/通道)以及两个单轴陀螺仪和加速度计对(1kHz/通道)对膝关节声音进行高吞吐量数据采集。这种方法有助于在全天自由活动的受试者进行屈伸和从坐起到站立活动的情况下,高效地记录关节声音特征,有可能提供一种评估康复状态的手段,例如在急性膝关节损伤之后。