Suppr超能文献

利用无监督图挖掘技术量化增加机械应力对膝关节声发射的影响。

Quantifying the Effects of Increasing Mechanical Stress on Knee Acoustical Emissions Using Unsupervised Graph Mining.

出版信息

IEEE Trans Neural Syst Rehabil Eng. 2018 Mar;26(3):594-601. doi: 10.1109/TNSRE.2018.2800702.

Abstract

In this paper, we investigate the effects of increasing mechanical stress on the knee joints by recording knee acoustical emissions and analyze them using an unsupervised graph mining algorithm. We placed miniature contact microphones on four different locations: on the lateral and medial sides of the patella and superficial to the lateral and medial meniscus. We extracted audio features in both time and frequency domains from the acoustical signals and calculated the graph community factor (GCF): an index of heterogeneity (variation) in the sounds due to different loading conditions enforced on the knee. To determine the GCF, a k-nearest neighbor graph was constructed and an Infomap community detection algorithm was used to extract all potential clusters within the graph-the number of detected communities were then quantified with GCF. Measurements from 12 healthy subjects showed that the GCF increased monotonically and significantly with vertical loading forces (mean GCF for no load = 30 and mean GCF for maximum load [body weight] = 39). This suggests that the increased complexity of the emitted sounds is related to the increased forces on the joint. In addition, microphones placed on the medial side of the patella and superficial to the lateral meniscus produced the most variation in the joint sounds. This information can be used to determine the optimal location for the microphones to obtain acoustical emissions with greatest sensitivity to loading. In future work, joint loading quantification based on acoustical emissions and derived GCF can be used for assessing cumulative knee usage and loading during activities, for example for patients rehabilitating knee injuries.

摘要

在本文中,我们通过记录膝关节发声并使用无监督图挖掘算法对其进行分析,研究了机械应力增加对膝关节的影响。我们在四个不同位置放置了微型接触麦克风:髌骨的外侧和内侧以及外侧和内侧半月板的浅层。我们从发声信号中提取了时间和频率域的音频特征,并计算了图社区因子(GCF):由于对膝关节施加的不同加载条件导致声音异质性(变化)的指标。为了确定 GCF,构建了一个 k-最近邻图,并使用 Infomap 社区检测算法提取图中的所有潜在聚类-然后使用 GCF 对检测到的社区数量进行量化。来自 12 位健康受试者的测量结果表明,GCF 随着垂直加载力单调且显著增加(无负荷时的平均 GCF 为 30,最大负荷[体重]时的平均 GCF 为 39)。这表明发出声音的复杂性增加与关节上的力增加有关。此外,放置在髌骨内侧和外侧半月板浅层的麦克风在关节声音中产生了最大的变化。这些信息可用于确定麦克风的最佳位置,以获得对加载最敏感的发声。在未来的工作中,可以基于发声和衍生的 GCF 来定量评估关节的加载情况,例如用于评估患者膝关节受伤康复期间的累积使用和加载情况。

相似文献

1
Quantifying the Effects of Increasing Mechanical Stress on Knee Acoustical Emissions Using Unsupervised Graph Mining.
IEEE Trans Neural Syst Rehabil Eng. 2018 Mar;26(3):594-601. doi: 10.1109/TNSRE.2018.2800702.
2
Acoustical Emission Analysis by Unsupervised Graph Mining: A Novel Biomarker of Knee Health Status.
IEEE Trans Biomed Eng. 2018 Jun;65(6):1291-1300. doi: 10.1109/TBME.2017.2743562. Epub 2017 Aug 29.
3
Quantifying Asymmetry Between Medial and Lateral Compartment Knee Loading Forces Using Acoustic Emissions.
IEEE Trans Biomed Eng. 2022 Apr;69(4):1541-1551. doi: 10.1109/TBME.2021.3124487. Epub 2022 Mar 18.
4
Quantifying the Consistency of Wearable Knee Acoustical Emission Measurements During Complex Motions.
IEEE J Biomed Health Inform. 2016 Sep;20(5):1265-72. doi: 10.1109/JBHI.2016.2579610. Epub 2016 Jun 10.
5
Novel Methods for Sensing Acoustical Emissions From the Knee for Wearable Joint Health Assessment.
IEEE Trans Biomed Eng. 2016 Aug;63(8):1581-90. doi: 10.1109/TBME.2016.2543226. Epub 2016 Mar 17.
6
-Value: A Potential Biomarker for Assessing Knee-Joint Health Using Acoustical Emission Sensing.
IEEE Sens Lett. 2018 Dec;2(4). doi: 10.1109/LSENS.2018.2871981. Epub 2018 Sep 24.
7
The detection of knee joint sounds at defined loads by means of vibroarthrography.
Clin Biomech (Bristol). 2020 Apr;74:1-7. doi: 10.1016/j.clinbiomech.2020.01.021. Epub 2020 Feb 8.
8
Real-time activity classification in a wearable system prototype for knee health assessment via joint sounds.
Annu Int Conf IEEE Eng Med Biol Soc. 2016 Aug;2016:3113-3116. doi: 10.1109/EMBC.2016.7591388.
9
Medial and lateral foot loading and its effect on knee joint loading.
Clin Biomech (Bristol). 2015 Oct;30(8):860-6. doi: 10.1016/j.clinbiomech.2015.06.002. Epub 2015 Jun 12.
10
Validity of and recommendations for knee joint acoustic assessments during different movement conditions.
J Biomech. 2020 Aug 26;109:109939. doi: 10.1016/j.jbiomech.2020.109939. Epub 2020 Jul 8.

引用本文的文献

1
Classifying Pre-Radiographic Osteoarthritis of the Knee Using Wearable Acoustics Sensing at the Point of Care.
IEEE Sens J. 2023 Oct 23;23(23):29619-21629. doi: 10.1109/jsen.2023.3325153.
2
Inferred networks, machine learning, and health data.
PLoS One. 2023 Jan 23;18(1):e0280910. doi: 10.1371/journal.pone.0280910. eCollection 2023.
3
A Feasibility Study on Tribological Origins of Knee Acoustic Emissions.
IEEE Trans Biomed Eng. 2022 May;69(5):1685-1695. doi: 10.1109/TBME.2021.3127030. Epub 2022 Apr 21.
4
Knee Acoustic Emissions as a Digital Biomarker of Disease Status in Juvenile Idiopathic Arthritis.
Front Digit Health. 2020 Nov 19;2:571839. doi: 10.3389/fdgth.2020.571839. eCollection 2020.
5
Quantifying Signal Quality for Joint Acoustic Emissions Using Graph-Based Spectral Embedding.
IEEE Sens J. 2021 Jun 15;21(12):13676-13684. doi: 10.1109/jsen.2021.3071664. Epub 2021 Apr 7.
6
Estimating Knee Joint Load Using Acoustic Emissions During Ambulation.
Ann Biomed Eng. 2021 Mar;49(3):1000-1011. doi: 10.1007/s10439-020-02641-7. Epub 2020 Oct 9.
7
A Pilot Study to Assess the Reliability of Sensing Joint Acoustic Emissions of the Wrist.
Sensors (Basel). 2020 Jul 30;20(15):4240. doi: 10.3390/s20154240.
8
A Glove-Based Form Factor for Collecting Joint Acoustic Emissions: Design and Validation.
Sensors (Basel). 2019 Jun 13;19(12):2683. doi: 10.3390/s19122683.
9
-Value: A Potential Biomarker for Assessing Knee-Joint Health Using Acoustical Emission Sensing.
IEEE Sens Lett. 2018 Dec;2(4). doi: 10.1109/LSENS.2018.2871981. Epub 2018 Sep 24.

本文引用的文献

1
Clustering Single-Cell Expression Data Using Random Forest Graphs.
IEEE J Biomed Health Inform. 2017 Jul;21(4):1172-1181. doi: 10.1109/JBHI.2016.2565561. Epub 2016 May 10.
2
Wearable Vector Electrical Bioimpedance System to Assess Knee Joint Health.
IEEE Trans Biomed Eng. 2017 Oct;64(10):2353-2360. doi: 10.1109/TBME.2016.2641958. Epub 2016 Dec 22.
3
Quantifying the Consistency of Wearable Knee Acoustical Emission Measurements During Complex Motions.
IEEE J Biomed Health Inform. 2016 Sep;20(5):1265-72. doi: 10.1109/JBHI.2016.2579610. Epub 2016 Jun 10.
4
Novel Methods for Sensing Acoustical Emissions From the Knee for Wearable Joint Health Assessment.
IEEE Trans Biomed Eng. 2016 Aug;63(8):1581-90. doi: 10.1109/TBME.2016.2543226. Epub 2016 Mar 17.
5
Running speed increases plantar load more than per cent body weight on an AlterG® treadmill.
J Sports Sci. 2017 Feb;35(3):277-282. doi: 10.1080/02640414.2016.1163401. Epub 2016 Mar 21.
6
Data-Driven Phenotypic Dissection of AML Reveals Progenitor-like Cells that Correlate with Prognosis.
Cell. 2015 Jul 2;162(1):184-97. doi: 10.1016/j.cell.2015.05.047. Epub 2015 Jun 18.
7
CellNet: network biology applied to stem cell engineering.
Cell. 2014 Aug 14;158(4):903-915. doi: 10.1016/j.cell.2014.07.020.
8
Knee joint forces: prediction, measurement, and significance.
Proc Inst Mech Eng H. 2012 Feb;226(2):95-102. doi: 10.1177/0954411911433372.
9
Diagnosis of osteoarthritis: imaging.
Bone. 2012 Aug;51(2):278-88. doi: 10.1016/j.bone.2011.11.019. Epub 2011 Dec 3.
10
Benchmarks for testing community detection algorithms on directed and weighted graphs with overlapping communities.
Phys Rev E Stat Nonlin Soft Matter Phys. 2009 Jul;80(1 Pt 2):016118. doi: 10.1103/PhysRevE.80.016118. Epub 2009 Jul 31.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验