Suppr超能文献

识别在帕金森病患者步态冻结期间能最佳检测脑电图功率谱改变的脑电记录组合。

Identifying montages that best detect the electroencephalogram power spectrum alteration during freezing of gait in Parkinson's disease patients.

作者信息

Ly Quynh Tran, Ardi Handojoseno A M, Gilat Moran, Nguyen Nghia, Tran Yvonne, Lewis Simon J G, Nguyen Hung T

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2016 Aug;2016:6094-6097. doi: 10.1109/EMBC.2016.7592119.

Abstract

Our research team has previously used four Electroencephalography (EEG) leads to successfully detect and predict Freezing of Gait (FOG) in Parkinson's disease (PD). However, it remained to be determined whether these four sensor locations that were arbitrarily chosen based on their role in motor control are indeed the most optimal for FOG detection. The aim of this study was therefore to determine the most optimal location and combination of sensors to detect FOG amongst a 32-channel EEG montage using our EEG classification system. EEG measures, including power spectral density, centroid frequency and power spectral entropy, were extracted from 7 patients with PD and FOG during a series of Timed up and Go tasks. By applying a feed-forward neural networks to classify EEG data, the obtained results showed that even a small number of electrodes suffice to construct a FOG detector with expected performance, which is comparable to the use of a full 32 channels montage. This finding therefore progresses the realization of a FOG detection system that can be effectively implemented on a daily basis for FOG prevention, improving the quality of life for many patients with PD.

摘要

我们的研究团队此前曾使用四个脑电图(EEG)导联成功检测并预测帕金森病(PD)中的步态冻结(FOG)。然而,基于其在运动控制中的作用而任意选择的这四个传感器位置是否确实是用于FOG检测的最佳位置,仍有待确定。因此,本研究的目的是使用我们的EEG分类系统,在32通道EEG脑电记录中确定检测FOG的最佳传感器位置和组合。在一系列定时起立行走任务期间,从7名患有PD和FOG的患者中提取EEG测量值,包括功率谱密度、质心频率和功率谱熵。通过应用前馈神经网络对EEG数据进行分类,获得的结果表明,即使少量电极也足以构建具有预期性能的FOG检测器,这与使用完整的32通道脑电记录相当。因此,这一发现推动了一种FOG检测系统的实现,该系统可以在日常基础上有效地用于预防FOG,改善许多PD患者的生活质量。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验