Suppr超能文献

帕金森病中冻结步态的神经关联:电生理学小型综述

Neural Correlates of Freezing of Gait in Parkinson's Disease: An Electrophysiology Mini-Review.

作者信息

Marquez J Sebastian, Hasan S M Shafiul, Siddiquee Masudur R, Luca Corneliu C, Mishra Virendra R, Mari Zoltan, Bai Ou

机构信息

Department of Electrical and Computer Engineering, Florida International University, Miami, FL, United States.

Department of Neurology, University of Miami Hospital, Miami, FL, United States.

出版信息

Front Neurol. 2020 Nov 10;11:571086. doi: 10.3389/fneur.2020.571086. eCollection 2020.

Abstract

Freezing of gait (FoG) is a disabling symptom characterized as a brief inability to step or by short steps, which occurs when initiating gait or while turning, affecting over half the population with advanced Parkinson's disease (PD). Several non-competing hypotheses have been proposed to explain the pathophysiology and mechanism behind FoG. Yet, due to the complexity of FoG and the lack of a complete understanding of its mechanism, no clear consensus has been reached on the best treatment options. Moreover, most studies that aim to explore neural biomarkers of FoG have been limited to semi-static or imagined paradigms. One of the biggest unmet needs in the field is the identification of reliable biomarkers that can be construed from real walking scenarios to guide better treatments and validate medical and therapeutic interventions. Advances in neural electrophysiology exploration, including EEG and DBS, will allow for pathophysiology research on more real-to-life scenarios for better FoG biomarker identification and validation. The major aim of this review is to highlight the most up-to-date studies that explain the mechanisms underlying FoG through electrophysiology explorations. The latest methodological approaches used in the neurophysiological study of FoG are summarized, and potential future research directions are discussed.

摘要

冻结步态(FoG)是一种致残症状,其特征为短暂无法迈步或步伐短小,在开始行走或转弯时出现,影响超过半数的晚期帕金森病(PD)患者。已经提出了几种互不冲突的假说来解释冻结步态背后的病理生理学和机制。然而,由于冻结步态的复杂性以及对其机制缺乏全面了解,对于最佳治疗方案尚未达成明确共识。此外,大多数旨在探索冻结步态神经生物标志物的研究仅限于半静态或想象范式。该领域最大的未满足需求之一是识别可从真实行走场景中解读出来的可靠生物标志物,以指导更好的治疗并验证医学和治疗干预措施。神经电生理学探索的进展,包括脑电图(EEG)和深部脑刺激(DBS),将有助于在更贴近现实生活的场景中进行病理生理学研究,以更好地识别和验证冻结步态的生物标志物。本综述的主要目的是突出通过电生理学探索来解释冻结步态潜在机制的最新研究。总结了冻结步态神经生理学研究中使用的最新方法,并讨论了潜在的未来研究方向。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/83b9/7683766/ef5002d4e295/fneur-11-571086-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验