Suppr超能文献

用于解决临床试验纳入标准的自动数据源识别

Automatic data source identification for clinical trial eligibility criteria resolution.

作者信息

Shivade Chaitanya, Hebert Courtney, Regan Kelly, Fosler-Lussier Eric, Lai Albert M

机构信息

Department of Computer Science and Engineering.

Department of Biomedical Informatics, The Ohio State University, Columbus, OH.

出版信息

AMIA Annu Symp Proc. 2017 Feb 10;2016:1149-1158. eCollection 2016.

Abstract

Clinical trial coordinators refer to both structured and unstructured sources of data when evaluating a subject for eligibility. While some eligibility criteria can be resolved using structured data, some require manual review of clinical notes. An important step in automating the trial screening process is to be able to identify the right data source for resolving each criterion. In this work, we discuss the creation of an eligibility criteria dataset for clinical trials for patients with two disparate diseases, annotated with the preferred data source for each criterion (i.e., structured or unstructured) by annotators with medical training. The dataset includes 50 heart-failure trials with a total of 766 eligibility criteria and 50 trials for chronic lymphocytic leukemia (CLL) with 677 criteria. Further, we developed machine learning models to predict the preferred data source: kernel methods outperform simpler learning models when used with a combination of lexical, syntactic, semantic, and surface features. Evaluation of these models indicates that the performance is consistent across data from both diagnoses, indicating generalizability of our method. Our findings are an important step towards ongoing efforts for automation of clinical trial screening.

摘要

在评估受试者是否符合条件时,临床试验协调员会参考结构化和非结构化数据源。虽然一些入选标准可以通过结构化数据解决,但有些则需要人工审查临床记录。实现试验筛选过程自动化的一个重要步骤是能够识别用于解决每个标准的正确数据源。在这项工作中,我们讨论了为患有两种不同疾病的患者创建临床试验入选标准数据集的问题,由受过医学培训的注释者为每个标准(即结构化或非结构化)标注首选数据源。该数据集包括50项心力衰竭试验,共有766条入选标准,以及50项慢性淋巴细胞白血病(CLL)试验,有677条标准。此外,我们开发了机器学习模型来预测首选数据源:当与词汇、句法、语义和表面特征结合使用时,核方法优于更简单的学习模型。对这些模型的评估表明,两种诊断数据的性能一致,表明我们方法具有通用性。我们的研究结果是朝着临床试验筛选自动化的持续努力迈出的重要一步。

相似文献

1
Automatic data source identification for clinical trial eligibility criteria resolution.
AMIA Annu Symp Proc. 2017 Feb 10;2016:1149-1158. eCollection 2016.
2
Textual inference for eligibility criteria resolution in clinical trials.
J Biomed Inform. 2015 Dec;58 Suppl(Suppl):S211-S218. doi: 10.1016/j.jbi.2015.09.008. Epub 2015 Sep 14.
5
Parsable Clinical Trial Eligibility Criteria Representation Using Natural Language Processing.
AMIA Annu Symp Proc. 2023 Apr 29;2022:616-624. eCollection 2022.
8
Automatic trial eligibility surveillance based on unstructured clinical data.
Int J Med Inform. 2019 Sep;129:13-19. doi: 10.1016/j.ijmedinf.2019.05.018. Epub 2019 May 23.
9
ClinicalTrials.gov as a data source for semi-automated point-of-care trial eligibility screening.
PLoS One. 2014 Oct 21;9(10):e111055. doi: 10.1371/journal.pone.0111055. eCollection 2014.

引用本文的文献

2
Artificial Intelligence Applied to clinical trials: opportunities and challenges.
Health Technol (Berl). 2023;13(2):203-213. doi: 10.1007/s12553-023-00738-2. Epub 2023 Feb 28.
3
Automated NLP Extraction of Clinical Rationale for Treatment Discontinuation in Breast Cancer.
JCO Clin Cancer Inform. 2021 May;5:550-560. doi: 10.1200/CCI.20.00139.
4
Amplifying Domain Expertise in Clinical Data Pipelines.
JMIR Med Inform. 2020 Nov 5;8(11):e19612. doi: 10.2196/19612.
6
Use of Natural Language Processing to Extract Clinical Cancer Phenotypes from Electronic Medical Records.
Cancer Res. 2019 Nov 1;79(21):5463-5470. doi: 10.1158/0008-5472.CAN-19-0579. Epub 2019 Aug 8.

本文引用的文献

1
Textual inference for eligibility criteria resolution in clinical trials.
J Biomed Inform. 2015 Dec;58 Suppl(Suppl):S211-S218. doi: 10.1016/j.jbi.2015.09.008. Epub 2015 Sep 14.
2
How essential are unstructured clinical narratives and information fusion to clinical trial recruitment?
AMIA Jt Summits Transl Sci Proc. 2014 Apr 7;2014:218-23. eCollection 2014.
4
Employing computers for the recruitment into clinical trials: a comprehensive systematic review.
J Med Internet Res. 2014 Jul 1;16(7):e161. doi: 10.2196/jmir.3446.
5
A review of approaches to identifying patient phenotype cohorts using electronic health records.
J Am Med Inform Assoc. 2014 Mar-Apr;21(2):221-30. doi: 10.1136/amiajnl-2013-001935. Epub 2013 Nov 7.
6
Analysis of eligibility criteria representation in industry-standard clinical trial protocols.
J Biomed Inform. 2013 Oct;46(5):805-13. doi: 10.1016/j.jbi.2013.06.001. Epub 2013 Jun 12.
7
Effort required in eligibility screening for clinical trials.
J Oncol Pract. 2012 Nov;8(6):365-70. doi: 10.1200/JOP.2012.000646. Epub 2012 Sep 11.
9
Dynamic categorization of clinical research eligibility criteria by hierarchical clustering.
J Biomed Inform. 2011 Dec;44(6):927-35. doi: 10.1016/j.jbi.2011.06.001. Epub 2011 Jun 12.
10
Analysis of eligibility criteria complexity in clinical trials.
Summit Transl Bioinform. 2010 Mar 1;2010:46-50.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验