Suppr超能文献

人工智能应用于临床试验:机遇与挑战。

Artificial Intelligence Applied to clinical trials: opportunities and challenges.

作者信息

Askin Scott, Burkhalter Denis, Calado Gilda, El Dakrouni Samar

机构信息

Massachusetts College of Pharmacy and Health Sciences (MCPHS), 179 Longwood Ave, 02115 Boston, MA USA.

Regulatory Affairs, Novartis Pharma AG, CH-4002 Postfach, Basel, Switzerland.

出版信息

Health Technol (Berl). 2023;13(2):203-213. doi: 10.1007/s12553-023-00738-2. Epub 2023 Feb 28.

Abstract

BACKGROUND

Clinical Trials (CTs) remain the foundation of safe and effective drug development. Given the evolving data-driven and personalized medicine approach in healthcare, it is imperative for companies and regulators to utilize tailored Artificial Intelligence (AI) solutions that enable expeditious and streamlined clinical research. In this paper, we identified opportunities, challenges, and potential implications of AI in CTs.

METHODS

Following an extensive search in relevant databases and websites, we gathered publications tackling the use of AI and Machine Learning (ML) in CTs from the past 5 years in the US and Europe, including Regulatory Authorities' documents.

RESULTS

Documented applications of AI commonly concern the oncology field and are mostly being applied in the area of recruitment. Main opportunities discussed aim to create efficiencies across CT activities, including the ability to reduce sample sizes, improve enrollment and conduct faster, more optimized adaptive CTs. While AI is an area of enthusiastic development, the identified challenges are ethical in nature and relate to data availability, standards, and most importantly, lack of regulatory guidance hindering the acceptance of AI tools in drug development. However, future implications are significant and are anticipated to improve the probability of success, reduce trial burden and overall, speed up research and regulatory approval.

CONCLUSION

The use of AI in CTs is in its relative infancy; however, it is a fast-evolving field. As regulators provide more guidance on the acceptability of AI in specific areas, we anticipate the scope of use to broaden and the volume of implementation to increase rapidly.

摘要

背景

临床试验仍然是安全有效的药物研发的基础。鉴于医疗保健领域中数据驱动和个性化医疗方法的不断发展,公司和监管机构必须利用量身定制的人工智能(AI)解决方案,以实现快速且简化的临床研究。在本文中,我们确定了人工智能在临床试验中的机遇、挑战及潜在影响。

方法

在对相关数据库和网站进行广泛搜索之后,我们收集了过去5年在美国和欧洲涉及人工智能和机器学习在临床试验中的应用的出版物,包括监管机构的文件。

结果

记录在案的人工智能应用通常涉及肿瘤学领域,并且大多应用于招募方面。所讨论的主要机遇旨在提高临床试验各项活动的效率,包括有能力减少样本量、改善入组情况以及开展更快、更优化的适应性临床试验。虽然人工智能是一个蓬勃发展的领域,但所确定的挑战本质上是伦理方面的,与数据可用性、标准相关,最重要的是,缺乏监管指导阻碍了人工智能工具在药物研发中的应用。然而,其未来影响意义重大,预计将提高成功概率、减轻试验负担,并总体上加快研究和监管审批速度。

结论

人工智能在临床试验中的应用尚处于相对初期阶段;然而它是一个快速发展的领域。随着监管机构针对人工智能在特定领域的可接受性提供更多指导,我们预计其使用范围将扩大,实施量将迅速增加。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0eb3/9974218/02be98d30ab0/12553_2023_738_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验