Graz Centre for Electron Microscopy, Steyrergasse 17, 8010 Graz, Austria.
Institute of Physics, Karl-Franzens-University , Universitätsplatz 5, 8010 Graz, Austria.
ACS Appl Mater Interfaces. 2017 Mar 8;9(9):8233-8240. doi: 10.1021/acsami.6b13062. Epub 2016 Dec 6.
During the past decade, significant progress has been made in the field of resonant optics ranging from fundamental aspects to concrete applications. While several techniques have been introduced for the fabrication of highly defined metallic nanostructures, the synthesis of complex, free-standing three-dimensional (3D) structures is still an intriguing, but so far intractable, challenge. In this study, we demonstrate a 3D direct-write synthesis approach that addresses this challenge. Specifically, we succeeded in the direct-write fabrication of 3D nanoarchitectures via electron-stimulated reactions, which are applicable on virtually any material and surface morphology. By that, complex 3D nanostructures composed of highly compact, pure gold can be fabricated, which reveal strong plasmonic activity and pave the way for a new generation of 3D nanoplasmonic architectures that can be printed on-demand.
在过去的十年中,从基础方面到具体应用,共振光学领域取得了重大进展。虽然已经引入了几种技术来制造高度定义的金属纳米结构,但合成复杂的、独立的三维(3D)结构仍然是一个有趣但迄今为止难以解决的挑战。在这项研究中,我们展示了一种解决这一挑战的 3D 直接写入合成方法。具体来说,我们成功地通过电子刺激反应直接写入制造了 3D 纳米结构,该方法适用于几乎任何材料和表面形态。由此,可以制造出由高度紧凑、纯金组成的复杂 3D 纳米结构,这些结构显示出强烈的等离子体活性,为新一代可按需打印的 3D 纳米等离子体结构铺平了道路。