Suppr超能文献

通过电子束诱导沉积生长的高导电性纯金纳米结构。

Highly conductive and pure gold nanostructures grown by electron beam induced deposition.

作者信息

Shawrav Mostafa M, Taus Philipp, Wanzenboeck Heinz D, Schinnerl M, Stöger-Pollach M, Schwarz S, Steiger-Thirsfeld A, Bertagnolli Emmerich

机构信息

Institute of Solid State Electronics, Vienna University of Technology, Vienna 1040, Austria.

University Service Center for Transmission Electron Microscope (USTEM), Vienna University of Technology, Vienna 1040, Austria.

出版信息

Sci Rep. 2016 Sep 26;6:34003. doi: 10.1038/srep34003.

Abstract

This work introduces an additive direct-write nanofabrication technique for producing extremely conductive gold nanostructures from a commercial metalorganic precursor. Gold content of 91 atomic % (at. %) was achieved by using water as an oxidative enhancer during direct-write deposition. A model was developed based on the deposition rate and the chemical composition, and it explains the surface processes that lead to the increases in gold purity and deposition yield. Co-injection of an oxidative enhancer enabled Focused Electron Beam Induced Deposition (FEBID)-a maskless, resistless deposition method for three dimensional (3D) nanostructures-to directly yield pure gold in a single process step, without post-deposition purification. Gold nanowires displayed resistivity down to 8.8 μΩ cm. This is the highest conductivity achieved so far from FEBID and it opens the possibility of applications in nanoelectronics, such as direct-write contacts to nanomaterials. The increased gold deposition yield and the ultralow carbon level will facilitate future applications such as the fabrication of 3D nanostructures in nanoplasmonics and biomolecule immobilization.

摘要

这项工作介绍了一种添加剂直写纳米制造技术,用于从商业金属有机前驱体中制备具有极高导电性的金纳米结构。在直写沉积过程中,通过使用水作为氧化增强剂,实现了91原子%(at.%)的金含量。基于沉积速率和化学成分建立了一个模型,该模型解释了导致金纯度和沉积产率提高的表面过程。共注入氧化增强剂使聚焦电子束诱导沉积(FEBID)——一种用于三维(3D)纳米结构的无掩膜、无抗蚀剂沉积方法——能够在单个工艺步骤中直接产生纯金,而无需沉积后纯化。金纳米线的电阻率低至8.8μΩ·cm。这是迄今为止FEBID所实现的最高电导率,它为纳米电子学中的应用开辟了可能性,例如与纳米材料的直写接触。金沉积产率的提高和超低的碳含量将促进未来的应用,如纳米等离子体学中3D纳米结构的制造和生物分子固定。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3ed4/5035929/13cbdb39a543/srep34003-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验