Kasaragod Deepa, Makita Shuichi, Hong Young-Joo, Yasuno Yoshiaki
Computational Optics Group, University of Tsukuba, Tsukuba, Japan.
Biomed Opt Express. 2017 Jan 9;8(2):653-669. doi: 10.1364/BOE.8.000653. eCollection 2017 Feb 1.
This paper presents a noise-stochastic corrected maximum estimator for birefringence imaging using Jones matrix optical coherence tomography. The estimator described in this paper is based on the relationship between probability distribution functions of the measured birefringence and the effective signal to noise ratio (ESNR) as well as the true birefringence and the true ESNR. The Monte Carlo method is used to numerically describe this relationship and adaptive 2D kernel density estimation provides the likelihood for estimation of the true birefringence. Improved estimation is shown for the new estimator with stochastic model of ESNR in comparison to the old estimator, both based on the Jones matrix noise model. A comparison with the mean estimator is also done. Numerical simulation validates the superiority of the new estimator. The superior performance of the new estimator was also shown by measurement of optic nerve head.
本文提出了一种用于琼斯矩阵光学相干断层扫描双折射成像的噪声随机校正最大估计器。本文所述的估计器基于测量的双折射的概率分布函数与有效信噪比(ESNR)之间的关系,以及真实双折射与真实ESNR之间的关系。蒙特卡罗方法用于数值描述这种关系,自适应二维核密度估计为真实双折射的估计提供了似然性。与基于琼斯矩阵噪声模型的旧估计器相比,新估计器在ESNR随机模型下显示出改进的估计效果。还与均值估计器进行了比较。数值模拟验证了新估计器的优越性。对视神经乳头的测量也显示了新估计器的优越性能。