Kasaragod Deepa, Makita Shuichi, Hong Young-Joo, Yasuno Yoshiaki
Computational Optics Group, University of Tsukuba, Tsukuba, Japan.
Biomed Opt Express. 2018 Jun 21;9(7):3220-3243. doi: 10.1364/BOE.9.003220. eCollection 2018 Jul 1.
A pixel-by-pixel tissue classification framework using multiple contrasts obtained by Jones matrix optical coherence tomography (JM-OCT) is demonstrated. The JM-OCT is an extension of OCT that provides OCT, OCT angiography, birefringence tomography, degree-of-polarization uniformity tomography, and attenuation coefficient tomography, simultaneously. The classification framework consists of feature engineering, -means clustering that generates a training dataset, training of a tissue classifier using the generated training dataset, and tissue classification by the trained classifier. The feature engineering process generates synthetic features from the primary optical contrasts obtained by JM-OCT. The tissue classification is performed in the feature space of the engineered features. We applied this framework to the analysis of optic nerve heads of posterior eyes. This classified each JM-OCT pixel into prelamina, lamina cribrosa (lamina beam), and retrolamina tissues. The lamina beam segmentation results were further utilized for birefringence and attenuation coefficient analysis of lamina beam.
展示了一种使用琼斯矩阵光学相干断层扫描(JM-OCT)获得的多对比度进行逐像素组织分类的框架。JM-OCT是光学相干断层扫描(OCT)的扩展,可同时提供OCT、OCT血管造影、双折射断层扫描、偏振度均匀性断层扫描和衰减系数断层扫描。该分类框架包括特征工程、生成训练数据集的K均值聚类、使用生成的训练数据集训练组织分类器以及由训练好的分类器进行组织分类。特征工程过程从JM-OCT获得的主要光学对比度中生成合成特征。组织分类在工程特征的特征空间中进行。我们将此框架应用于后眼视神经乳头的分析。这将每个JM-OCT像素分类为筛板前、筛板(板层束)和筛板后组织。板层束分割结果进一步用于板层束的双折射和衰减系数分析。