Suppr超能文献

光学相干弹性成像——组织生物力学中的光学相干断层扫描技术[特邀报告]

Optical coherence elastography - OCT at work in tissue biomechanics [Invited].

作者信息

Larin Kirill V, Sampson David D

机构信息

Department of Biomedical Engineering, University of Houston, 3605 Cullen Blvd., Houston, Texas 77204-5060, USA; Department of Molecular Physiology and Biophysics, Baylor College of Medicine, 1 Baylor Plaza, Houston, Texas 77030, USA;

Optical + Biomedical Engineering Laboratory, School of Electrical, Electronic & Computer Engineering, The University of Western Australia, 35 Stirling Highway, Perth, WA 6009, Australia; Centre for Microscopy, Characterisation & Analysis, The University of Western Australia, 35 Stirling Highway, Perth, WA 6009, Australia;

出版信息

Biomed Opt Express. 2017 Jan 27;8(2):1172-1202. doi: 10.1364/BOE.8.001172. eCollection 2017 Feb 1.

Abstract

Optical coherence elastography (OCE), as the use of OCT to perform elastography has come to be known, began in 1998, around ten years after the rest of the field of elastography - the use of imaging to deduce mechanical properties of tissues. After a slow start, the maturation of OCT technology in the early to mid 2000s has underpinned a recent acceleration in the field. With more than 20 papers published in 2015, and more than 25 in 2016, OCE is growing fast, but still small compared to the companion fields of cell mechanics research methods, and medical elastography. In this review, we describe the early developments in OCE, and the factors that led to the current acceleration. Much of our attention is on the key recent advances, with a strong emphasis on future prospects, which are exceptionally bright.

摘要

光学相干弹性成像技术(OCE),也就是利用光学相干断层扫描(OCT)进行弹性成像的技术,始于1998年,比弹性成像领域的其他技术晚了大约十年,弹性成像领域是利用成像技术推断组织的力学特性。在经历了缓慢的起步阶段后,21世纪初至中期OCT技术的成熟为该领域最近的加速发展奠定了基础。2015年发表了20多篇论文,2016年发表了25多篇论文,OCE发展迅速,但与细胞力学研究方法和医学弹性成像等相关领域相比,规模仍然较小。在这篇综述中,我们描述了OCE的早期发展以及导致当前加速发展的因素。我们的大部分注意力集中在近期的关键进展上,并特别强调了前景异常光明的未来前景。

相似文献

1
Optical coherence elastography - OCT at work in tissue biomechanics [Invited].
Biomed Opt Express. 2017 Jan 27;8(2):1172-1202. doi: 10.1364/BOE.8.001172. eCollection 2017 Feb 1.
2
Optical coherence elastography in ophthalmology.
J Biomed Opt. 2017 Dec;22(12):1-28. doi: 10.1117/1.JBO.22.12.121720.
3
Strain and elasticity imaging in compression optical coherence elastography: The two-decade perspective and recent advances.
J Biophotonics. 2021 Feb;14(2):e202000257. doi: 10.1002/jbio.202000257. Epub 2020 Nov 3.
4
Acoustic radiation force optical coherence elastography for elasticity assessment of soft tissues.
Appl Spectrosc Rev. 2019;54(6):457-481. doi: 10.1080/05704928.2018.1467436. Epub 2018 Jun 25.
5
Magnetomotive Optical Coherence Elastography for Magnetic Hyperthermia Dosimetry Based on Dynamic Tissue Biomechanics.
IEEE J Sel Top Quantum Electron. 2016 Jul-Aug;22(4). doi: 10.1109/JSTQE.2015.2505147. Epub 2015 Dec 17.
6
Multimodal Heartbeat and Compression Optical Coherence Elastography for Mapping Corneal Biomechanics.
Front Med (Lausanne). 2022 Apr 5;9:833597. doi: 10.3389/fmed.2022.833597. eCollection 2022.
7
Optical coherence elastography: current status and future applications.
J Biomed Opt. 2011 Apr;16(4):043001. doi: 10.1117/1.3560294.
8
DYNAMIC OPTICAL COHERENCE ELASTOGRAPHY: A REVIEW.
J Innov Opt Health Sci. 2010 Oct;3(4):221-233. doi: 10.1142/S1793545810001180.
9
Common-path phase-sensitive optical coherence tomography provides enhanced phase stability and detection sensitivity for dynamic elastography.
Biomed Opt Express. 2017 Oct 26;8(11):5253-5266. doi: 10.1364/BOE.8.005253. eCollection 2017 Nov 1.

引用本文的文献

1
Wide-field quantitative micro-elastography of freshly excised human prostate.
Biomed Opt Express. 2025 Jul 3;16(8):3027-3046. doi: 10.1364/BOE.563310. eCollection 2025 Aug 1.
2
Optoretinography with actively stabilized adaptive optics optical coherence tomography.
Biomed Opt Express. 2025 Jul 17;16(8):3222-3236. doi: 10.1364/BOE.566376. eCollection 2025 Aug 1.
3
A Method for Visualizing Corneal Dynamics Through Pixel Intensity Tracking.
Transl Vis Sci Technol. 2025 Jun 2;14(6):24. doi: 10.1167/tvst.14.6.24.
4
5
Phase-restoring subpixel image registration: enhancing motion detection performance in Fourier-domain optical coherence tomography.
J Phys D Appl Phys. 2025 Apr 7;58(14):145102. doi: 10.1088/1361-6463/adb3b4. Epub 2025 Feb 21.
6
Assessing UVA and Laser-Induced Crosslinking via Brillouin Microscopy.
J Biophotonics. 2025 May;18(5):e202400401. doi: 10.1002/jbio.202400401. Epub 2025 Feb 16.
7
Determinants of Human Corneal Mechanical Wave Dispersion for In Vivo Optical Coherence Elastography.
Transl Vis Sci Technol. 2025 Jan 2;14(1):26. doi: 10.1167/tvst.14.1.26.
8
Photothermal optical coherence microscopy for studying lipid architecture in human carotid arteries.
Biomed Opt Express. 2024 Nov 4;15(12):6654-6669. doi: 10.1364/BOE.534800. eCollection 2024 Dec 1.
9
VP-net: an end-to-end deep learning network for elastic wave velocity prediction in human skin using optical coherence elastography.
Front Bioeng Biotechnol. 2024 Oct 14;12:1465823. doi: 10.3389/fbioe.2024.1465823. eCollection 2024.
10
A novel stress sensor enables accurate estimation of micro-scale tissue mechanics in quantitative micro-elastography.
APL Bioeng. 2024 Sep 23;8(3):036115. doi: 10.1063/5.0220309. eCollection 2024 Sep.

本文引用的文献

1
A focused air-pulse system for optical-coherence-tomography-based measurements of tissue elasticity.
Laser Phys Lett. 2013;10(7). doi: 10.1088/1612-2011/10/7/075605. Epub 2013 May 20.
2
Magnetomotive Optical Coherence Elastography for Magnetic Hyperthermia Dosimetry Based on Dynamic Tissue Biomechanics.
IEEE J Sel Top Quantum Electron. 2016 Jul-Aug;22(4). doi: 10.1109/JSTQE.2015.2505147. Epub 2015 Dec 17.
3
Assessing the effects of riboflavin/UV-A crosslinking on porcine corneal mechanical anisotropy with optical coherence elastography.
Biomed Opt Express. 2016 Dec 19;8(1):349-366. doi: 10.1364/BOE.8.000349. eCollection 2017 Jan 1.
4
Optical coherence elastography for evaluating customized riboflavin/UV-A corneal collagen crosslinking.
J Biomed Opt. 2017 Sep 1;22(9):91504. doi: 10.1117/1.JBO.22.9.091504.
5
Acoustic micro-tapping for non-contact 4D imaging of tissue elasticity.
Sci Rep. 2016 Dec 23;6:38967. doi: 10.1038/srep38967.
6
Wide-field optical coherence micro-elastography for intraoperative assessment of human breast cancer margins.
Biomed Opt Express. 2016 Sep 19;7(10):4139-4153. doi: 10.1364/BOE.7.004139. eCollection 2016 Oct 1.
7
Optical coherence elastography assessment of corneal viscoelasticity with a modified Rayleigh-Lamb wave model.
J Mech Behav Biomed Mater. 2017 Feb;66:87-94. doi: 10.1016/j.jmbbm.2016.11.004. Epub 2016 Nov 5.
9
Birefringence microscopy platform for assessing airway smooth muscle structure and function in vivo.
Sci Transl Med. 2016 Oct 5;8(359):359ra131. doi: 10.1126/scitranslmed.aag1424.
10
Quantifying tissue viscoelasticity using optical coherence elastography and the Rayleigh wave model.
J Biomed Opt. 2016 Sep 1;21(9):90504. doi: 10.1117/1.JBO.21.9.090504.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验