Suppr超能文献

伴侣蛋白通过分离荧光素酶的结构域来拯救其折叠。

Chaperones rescue luciferase folding by separating its domains.

作者信息

Scholl Zackary N, Yang Weitao, Marszalek Piotr E

机构信息

From the Program in Computational Biology and Bioinformatics.

From the Program in Computational Biology and Bioinformatics, Department of Chemistry, and.

出版信息

J Biol Chem. 2014 Oct 10;289(41):28607-18. doi: 10.1074/jbc.M114.582049. Epub 2014 Aug 26.

Abstract

Over the last 50 years, significant progress has been made toward understanding how small single-domain proteins fold. However, very little is known about folding mechanisms of medium and large multidomain proteins that predominate the proteomes of all forms of life. Large proteins frequently fold cotranslationally and/or require chaperones. Firefly (Photinus pyralis) luciferase (Luciferase, 550 residues) has been a model of a cotranslationally folding protein whose extremely slow refolding (approximately days) is catalyzed by chaperones. However, the mechanism by which Luciferase misfolds and how chaperones assist Luciferase refolding remains unknown. Here we combine single-molecule force spectroscopy (atomic force microscopy (AFM)/single-molecule force spectroscopy) with steered molecular dynamic computer simulations to unravel the mechanism of chaperone-assisted Luciferase refolding. Our AFM and steered molecular dynamic results show that partially unfolded Luciferase, with the N-terminal domain remaining folded, can refold robustly without chaperones. Complete unfolding causes Luciferase to get trapped in very stable non-native configurations involving interactions between N- and C-terminal residues. However, chaperones allow the completely unfolded Luciferase to refold quickly in AFM experiments, strongly suggesting that chaperones are able to sequester non-natively contacting residues. More generally, we suggest that many chaperones, rather than actively promoting the folding, mimic the ribosomal exit tunnel and physically separate protein domains, allowing them to fold in a cotranslational-like sequential process.

摘要

在过去的50年里,我们在理解小单结构域蛋白如何折叠方面取得了重大进展。然而,对于构成所有生命形式蛋白质组主体的中大型多结构域蛋白的折叠机制,我们却知之甚少。大型蛋白质通常在翻译过程中折叠和/或需要伴侣蛋白。萤火虫(Photinus pyralis)荧光素酶(550个残基)一直是翻译过程中折叠蛋白的模型,其极其缓慢的重折叠过程(约数天)由伴侣蛋白催化。然而,荧光素酶错误折叠的机制以及伴侣蛋白如何协助荧光素酶重折叠仍然未知。在这里,我们将单分子力谱(原子力显微镜(AFM)/单分子力谱)与分子动力学计算机模拟相结合,以揭示伴侣蛋白辅助荧光素酶重折叠的机制。我们的AFM和分子动力学模拟结果表明,部分未折叠的荧光素酶,其N端结构域保持折叠状态,在没有伴侣蛋白的情况下也能稳健地重折叠。完全展开会导致荧光素酶被困在非常稳定的非天然构象中,涉及N端和C端残基之间的相互作用。然而,在AFM实验中,伴侣蛋白能使完全展开的荧光素酶快速重折叠,这强烈表明伴侣蛋白能够隔离非天然接触的残基。更普遍地说,我们认为许多伴侣蛋白并非积极促进折叠,而是模拟核糖体出口通道,物理上分离蛋白质结构域,使其能够以类似翻译过程的顺序进行折叠。

相似文献

1
Chaperones rescue luciferase folding by separating its domains.
J Biol Chem. 2014 Oct 10;289(41):28607-18. doi: 10.1074/jbc.M114.582049. Epub 2014 Aug 26.
2
A Photinus pyralis and Luciola italica chimeric firefly luciferase produces enhanced bioluminescence.
Biochemistry. 2014 Oct 14;53(40):6287-9. doi: 10.1021/bi501202u. Epub 2014 Oct 1.
3
Increase of segmental mobility through insertion of a flexible linker in split point of firefly luciferase.
Int J Biol Macromol. 2017 Jan;94(Pt B):762-770. doi: 10.1016/j.ijbiomac.2016.03.055. Epub 2016 Mar 26.
4
Improvement of thermostability and activity of firefly luciferase through [TMG][Ac] ionic liquid mediator.
Appl Biochem Biotechnol. 2012 Oct;168(3):604-15. doi: 10.1007/s12010-012-9803-8. Epub 2012 Jul 19.
6
Identification of a functional luciferase gene in the non-luminous diurnal firefly, Lucidina biplagiata.
Insect Mol Biol. 2010 Dec;19(6):737-43. doi: 10.1111/j.1365-2583.2010.01027.x.
7
Biochemical characterization and cooperation with co-chaperones of heat shock protein 90 from Schizosaccharomyces pombe.
J Biosci Bioeng. 2013 Oct;116(4):444-8. doi: 10.1016/j.jbiosc.2013.04.020. Epub 2013 May 9.
8
Effective cotranslational folding of firefly luciferase without chaperones of the Hsp70 family.
Protein Sci. 2006 Feb;15(2):242-7. doi: 10.1110/ps.051752506. Epub 2005 Dec 29.
9
Molecular enigma of multicolor bioluminescence of firefly luciferase.
Cell Mol Life Sci. 2011 Apr;68(7):1167-82. doi: 10.1007/s00018-010-0607-0. Epub 2010 Dec 28.
10
Quantum yields and quantitative spectra of firefly bioluminescence with various bivalent metal ions.
Photochem Photobiol. 2011 Jul-Aug;87(4):846-52. doi: 10.1111/j.1751-1097.2011.00931.x. Epub 2011 May 10.

引用本文的文献

2
Real-time single-molecule observation of chaperone-assisted protein folding.
Sci Adv. 2022 Dec 14;8(50):eadd0922. doi: 10.1126/sciadv.add0922.
3
Mechanical regulation of talin through binding and history-dependent unfolding.
Sci Adv. 2022 Jul 15;8(28):eabl7719. doi: 10.1126/sciadv.abl7719.
4
Co-Translational Folding of Multi-Domain Proteins.
Front Mol Biosci. 2022 Apr 20;9:869027. doi: 10.3389/fmolb.2022.869027. eCollection 2022.
6
Mechanical Stability of a Small, Highly-Luminescent Engineered Protein NanoLuc.
Int J Mol Sci. 2020 Dec 23;22(1):55. doi: 10.3390/ijms22010055.
7
Piecewise All-Atom SMD Simulations Reveal Key Secondary Structures in Luciferase Unfolding Pathway.
Biophys J. 2020 Dec 1;119(11):2251-2261. doi: 10.1016/j.bpj.2020.10.023. Epub 2020 Oct 30.
8
Cotranslational folding allows misfolding-prone proteins to circumvent deep kinetic traps.
Proc Natl Acad Sci U S A. 2020 Jan 21;117(3):1485-1495. doi: 10.1073/pnas.1913207117. Epub 2020 Jan 7.
9
Energetic dependencies dictate folding mechanism in a complex protein.
Proc Natl Acad Sci U S A. 2019 Dec 17;116(51):25641-25648. doi: 10.1073/pnas.1914366116. Epub 2019 Nov 27.
10
Unraveling the Mechanical Unfolding Pathways of a Multidomain Protein: Phosphoglycerate Kinase.
Biophys J. 2018 Jul 3;115(1):46-58. doi: 10.1016/j.bpj.2018.05.028.

本文引用的文献

1
GROMACS 4.5: a high-throughput and highly parallel open source molecular simulation toolkit.
Bioinformatics. 2013 Apr 1;29(7):845-54. doi: 10.1093/bioinformatics/btt055. Epub 2013 Feb 13.
2
The protein-folding problem, 50 years on.
Science. 2012 Nov 23;338(6110):1042-6. doi: 10.1126/science.1219021.
3
A thermodynamic definition of protein domains.
Proc Natl Acad Sci U S A. 2012 Jun 12;109(24):9420-5. doi: 10.1073/pnas.1202604109. Epub 2012 May 25.
4
The ribosome modulates nascent protein folding.
Science. 2011 Dec 23;334(6063):1723-7. doi: 10.1126/science.1209740.
5
The complex folding network of single calmodulin molecules.
Science. 2011 Oct 28;334(6055):512-6. doi: 10.1126/science.1207598.
7
Full reconstruction of a vectorial protein folding pathway by atomic force microscopy and molecular dynamics simulations.
J Biol Chem. 2010 Dec 3;285(49):38167-72. doi: 10.1074/jbc.M110.179697. Epub 2010 Sep 24.
8
Chaperonin-catalyzed rescue of kinetically trapped states in protein folding.
Cell. 2010 Jul 9;142(1):112-22. doi: 10.1016/j.cell.2010.05.027.
9
Fast and forceful refolding of stretched alpha-helical solenoid proteins.
Biophys J. 2010 Jun 16;98(12):3086-92. doi: 10.1016/j.bpj.2010.02.054.
10
SMOG@ctbp: simplified deployment of structure-based models in GROMACS.
Nucleic Acids Res. 2010 Jul;38(Web Server issue):W657-61. doi: 10.1093/nar/gkq498. Epub 2010 Jun 4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验