Liu Haipei, Liu Zhaowei, Yang Byeongseon, Lopez Morales Joanan, Nash Michael A
Department of Chemistry, University of Basel, 4058 Basel, Switzerland.
Department of Biosystems Science and Engineering, ETH Zurich, 4058 Basel, Switzerland.
JACS Au. 2022 May 18;2(6):1417-1427. doi: 10.1021/jacsau.2c00121. eCollection 2022 Jun 27.
The opportunistic pathogen utilizes a multidomain surface adhesin protein to bind host components and adhere to tissues. While it is known that the interaction between the SdrG receptor and its fibrinopeptide target (FgB) is exceptionally mechanostable (∼2 nN), the influence of downstream B domains (B1 and B2) is unclear. Here, we studied the mechanical relationships between folded B domains and the SdrG receptor bound to FgB. We used protein engineering, single-molecule force spectroscopy (SMFS) with an atomic force microscope (AFM), and Monte Carlo simulations to understand how the mechanical properties of folded sacrificial domains, in general, can be optimally tuned to match the stability of a receptor-ligand complex. Analogous to macroscopic suspension systems, sacrificial shock absorber domains should neither be too weak nor too strong to optimally dissipate mechanical energy. We built artificial molecular shock absorber systems based on the nanobody (VHH) scaffold and studied the competition between domain unfolding and receptor unbinding. We quantitatively determined the optimal stability of shock absorbers that maximizes work dissipation on average for a given receptor and found that natural sacrificial domains from pathogenic and adhesins exhibit stabilities at or near this optimum within a specific range of loading rates. These findings demonstrate how tuning the stability of sacrificial domains in adhesive polyproteins can be used to maximize mechanical work dissipation and serve as an adhesion strategy by bacteria.
这种机会致病菌利用一种多结构域表面粘附蛋白来结合宿主成分并粘附于组织。虽然已知SdrG受体与其纤维蛋白肽靶标(FgB)之间的相互作用具有极高的机械稳定性(约2 nN),但其下游B结构域(B1和B2)的影响尚不清楚。在此,我们研究了折叠的B结构域与结合FgB的SdrG受体之间的力学关系。我们采用蛋白质工程、利用原子力显微镜(AFM)的单分子力谱(SMFS)以及蒙特卡罗模拟,以了解一般情况下折叠的牺牲结构域的力学性质如何能够得到最佳调节,以匹配受体-配体复合物的稳定性。类似于宏观悬浮系统,牺牲性减震结构域既不能太弱也不能太强,才能最佳地耗散机械能。我们基于纳米抗体(VHH)支架构建了人工分子减震系统,并研究了结构域展开与受体解离之间的竞争。我们定量确定了减震器的最佳稳定性,即在给定受体的情况下平均能使功耗散最大化,并发现来自致病性粘附素的天然牺牲结构域在特定加载速率范围内表现出处于或接近这一最佳值的稳定性。这些发现表明,调节粘附性多蛋白中牺牲结构域的稳定性如何可用于使机械功耗散最大化,并作为细菌的一种粘附策略。