Department of Chemistry, Iowa State University , Ames, Iowa 50011, United States.
Chemical Sciences and Engineering Division, Argonne National Laboratory , Lemont, Illinois 60439, United States.
J Am Chem Soc. 2017 Apr 5;139(13):4762-4768. doi: 10.1021/jacs.6b12780. Epub 2017 Mar 22.
Atomically ordered intermetallic nanoparticles (iNPs) have sparked considerable interest in fuel cell applications by virtue of their exceptional electronic and structural properties. However, the synthesis of small iNPs in a controllable manner remains a formidable challenge because of the high temperature generally required in the formation of intermetallic phases. Here we report a general method for the synthesis of PtZn iNPs (3.2 ± 0.4 nm) on multiwalled carbon nanotubes (MWNT) via a facile and capping agent free strategy using a sacrificial mesoporous silica (mSiO) shell. The as-prepared PtZn iNPs exhibited ca. 10 times higher mass activity in both acidic and basic solution toward the methanol oxidation reaction (MOR) compared to larger PtZn iNPs synthesized on MWNT without the mSiO shell. Density functional theory (DFT) calculations predict that PtZn systems go through a "non-CO" pathway for MOR because of the stabilization of the OH* intermediate by Zn atoms, while a pure Pt system forms highly stable COH* and CO* intermediates, leading to catalyst deactivation. Experimental studies on the origin of the backward oxidation peak of MOR coincide well with DFT predictions. Moreover, the calculations demonstrate that MOR on smaller PtZn iNPs is energetically more favorable than larger iNPs, due to their high density of corner sites and lower-lying energetic pathway. Therefore, smaller PtZn iNPs not only increase the number but also enhance the activity of the active sites in MOR compared with larger ones. This work opens a new avenue for the synthesis of small iNPs with more undercoordinated and enhanced active sites for fuel cell applications.
原子有序的金属间纳米粒子(iNPs)因其优异的电子和结构特性,在燃料电池应用中引起了极大的兴趣。然而,由于形成金属间相通常需要高温,因此以可控的方式合成小 iNPs 仍然是一个巨大的挑战。在这里,我们报道了一种通过简便且无封端剂的策略,在多壁碳纳米管(MWNT)上合成 PtZn iNPs(3.2±0.4nm)的通用方法,该方法使用牺牲介孔二氧化硅(mSiO)壳。与没有 mSiO 壳的 MWNT 上合成的较大的 PtZn iNPs 相比,所制备的 PtZn iNPs 在酸性和碱性溶液中对甲醇氧化反应(MOR)的质量活性高约 10 倍。密度泛函理论(DFT)计算预测,由于 Zn 原子稳定了 OH中间体,PtZn 体系在 MOR 中经历了“非-CO”途径,而纯 Pt 体系形成了高度稳定的 COH和 CO*中间体,导致催化剂失活。关于 MOR 反向氧化峰起源的实验研究与 DFT 预测非常吻合。此外,计算表明,由于小角位点的高密度和更低的能垒路径,较小的 PtZn iNPs 上的 MOR 比较大的 iNPs 更具能量优势。因此,与较大的 iNPs 相比,较小的 PtZn iNPs 不仅增加了 MOR 的活性位点数,而且提高了其活性。这项工作为合成具有更多低配位和增强的活性位的小 iNPs 开辟了一条新途径,可用于燃料电池应用。