Díaz-Montaña Juan J, Díaz-Díaz Norberto, Gómez-Vela Francisco
Intelligent Data Analysis (DATAi), Division of Computer Science, Pablo de Olavide University, ES-41013 Seville, Spain.
J Biomed Inform. 2017 Apr;68:71-82. doi: 10.1016/j.jbi.2017.02.013. Epub 2017 Mar 6.
Since the popularization of biological network inference methods, it has become crucial to create methods to validate the resulting models. Here we present GFD-Net, the first methodology that applies the concept of semantic similarity to gene network analysis. GFD-Net combines the concept of semantic similarity with the use of gene network topology to analyze the functional dissimilarity of gene networks based on Gene Ontology (GO). The main innovation of GFD-Net lies in the way that semantic similarity is used to analyze gene networks taking into account the network topology. GFD-Net selects a functionality for each gene (specified by a GO term), weights each edge according to the dissimilarity between the nodes at its ends and calculates a quantitative measure of the network functional dissimilarity, i.e. a quantitative value of the degree of dissimilarity between the connected genes. The robustness of GFD-Net as a gene network validation tool was demonstrated by performing a ROC analysis on several network repositories. Furthermore, a well-known network was analyzed showing that GFD-Net can also be used to infer knowledge. The relevance of GFD-Net becomes more evident in Section "GFD-Net applied to the study of human diseases" where an example of how GFD-Net can be applied to the study of human diseases is presented. GFD-Net is available as an open-source Cytoscape app which offers a user-friendly interface to configure and execute the algorithm as well as the ability to visualize and interact with the results(http://apps.cytoscape.org/apps/gfdnet).
自从生物网络推理方法普及以来,创建验证所得模型的方法变得至关重要。在此,我们介绍GFD-Net,这是第一种将语义相似性概念应用于基因网络分析的方法。GFD-Net将语义相似性概念与基因网络拓扑结构的使用相结合,以基于基因本体论(GO)分析基因网络的功能差异。GFD-Net的主要创新之处在于,在考虑网络拓扑结构的情况下,利用语义相似性来分析基因网络。GFD-Net为每个基因选择一种功能(由一个GO术语指定),根据其两端节点之间的差异对每条边进行加权,并计算网络功能差异的定量度量,即连接基因之间差异程度的定量值。通过对多个网络存储库进行ROC分析,证明了GFD-Net作为基因网络验证工具的稳健性。此外,对一个知名网络进行了分析,结果表明GFD-Net还可用于推断知识。在“GFD-Net应用于人类疾病研究”部分,给出了GFD-Net如何应用于人类疾病研究的示例,GFD-Net的相关性变得更加明显。GFD-Net作为一个开源的Cytoscape应用程序可用,它提供了一个用户友好的界面来配置和执行算法,以及可视化结果并与之交互的能力(http://apps.cytoscape.org/apps/gfdnet)。