Suppr超能文献

基于 GO 的基因集功能差异度。

GO-based functional dissimilarity of gene sets.

机构信息

School of Engineering, Pablo de Olavide University, Seville, Spain.

出版信息

BMC Bioinformatics. 2011 Sep 1;12:360. doi: 10.1186/1471-2105-12-360.

Abstract

BACKGROUND

The Gene Ontology (GO) provides a controlled vocabulary for describing the functions of genes and can be used to evaluate the functional coherence of gene sets. Many functional coherence measures consider each pair of gene functions in a set and produce an output based on all pairwise distances. A single gene can encode multiple proteins that may differ in function. For each functionality, other proteins that exhibit the same activity may also participate. Therefore, an identification of the most common function for all of the genes involved in a biological process is important in evaluating the functional similarity of groups of genes and a quantification of functional coherence can helps to clarify the role of a group of genes working together.

RESULTS

To implement this approach to functional assessment, we present GFD (GO-based Functional Dissimilarity), a novel dissimilarity measure for evaluating groups of genes based on the most relevant functions of the whole set. The measure assigns a numerical value to the gene set for each of the three GO sub-ontologies.

CONCLUSIONS

Results show that GFD performs robustly when applied to gene set of known functionality (extracted from KEGG). It performs particularly well on randomly generated gene sets. An ROC analysis reveals that the performance of GFD in evaluating the functional dissimilarity of gene sets is very satisfactory. A comparative analysis against other functional measures, such as GS2 and those presented by Resnik and Wang, also demonstrates the robustness of GFD.

摘要

背景

基因本体论 (GO) 提供了一个描述基因功能的受控词汇表,可用于评估基因集的功能一致性。许多功能一致性度量考虑了一个集合中的每对基因功能,并根据所有的成对距离生成输出。单个基因可以编码多种功能不同的蛋白质。对于每种功能,其他表现出相同活性的蛋白质也可能参与其中。因此,确定参与生物过程的所有基因的最常见功能对于评估基因集的功能相似性以及量化功能一致性非常重要,因为这有助于阐明一组共同发挥作用的基因的作用。

结果

为了实现这种功能评估方法,我们提出了 GFD(基于 GO 的功能差异),这是一种新的差异度量方法,用于根据整个集合的最相关功能评估基因集。该度量方法为三个 GO 子本体中的每一个分配一个数值给基因集。

结论

结果表明,GFD 在应用于具有已知功能的基因集(从 KEGG 中提取)时表现稳健。它在随机生成的基因集上表现尤其出色。ROC 分析表明,GFD 在评估基因集功能差异方面的性能非常令人满意。与其他功能度量方法(如 GS2 和 Resnik 和 Wang 提出的方法)的比较分析也证明了 GFD 的稳健性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b864/3248071/d8d3a0934a3d/1471-2105-12-360-1.jpg

相似文献

1
GO-based functional dissimilarity of gene sets.基于 GO 的基因集功能差异度。
BMC Bioinformatics. 2011 Sep 1;12:360. doi: 10.1186/1471-2105-12-360.

引用本文的文献

2
Functional coherence metrics in protein families.蛋白质家族中的功能一致性指标
J Biomed Semantics. 2016 Jun 23;7(1):41. doi: 10.1186/s13326-016-0076-y.
6
Improving clustering with metabolic pathway data.利用代谢途径数据改进聚类。
BMC Bioinformatics. 2014 Apr 10;15:101. doi: 10.1186/1471-2105-15-101.

本文引用的文献

5
Semantic similarity in biomedical ontologies.生物医学本体中的语义相似性。
PLoS Comput Biol. 2009 Jul;5(7):e1000443. doi: 10.1371/journal.pcbi.1000443. Epub 2009 Jul 31.
9
InterPro: the integrative protein signature database.InterPro:综合蛋白质特征数据库。
Nucleic Acids Res. 2009 Jan;37(Database issue):D211-5. doi: 10.1093/nar/gkn785. Epub 2008 Oct 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验