Suppr超能文献

红腿跑蛙跳跃的逆动力学建模

Inverse dynamic modelling of jumping in the red-legged running frog, .

作者信息

Porro Laura B, Collings Amber J, Eberhard Enrico A, Chadwick Kyle P, Richards Christopher T

机构信息

Structure and Motion Laboratory, Department of Comparative Biomedical Sciences, Royal Veterinary College, Hawkshead Lane, Hatfield AL9 7TA, UK

Structure and Motion Laboratory, Department of Comparative Biomedical Sciences, Royal Veterinary College, Hawkshead Lane, Hatfield AL9 7TA, UK.

出版信息

J Exp Biol. 2017 May 15;220(Pt 10):1882-1893. doi: 10.1242/jeb.155416. Epub 2017 Mar 8.

Abstract

Although the red-legged running frog, , is secondarily a walker/runner, it retains the capacity for multiple locomotor modes, including jumping at a wide range of angles (nearly 70 deg). Using simultaneous hind limb kinematics and single-foot ground reaction forces, we performed inverse dynamics analyses to calculate moment arms and torques about the hind limb joints during jumping at different angles in We show that forward thrust is generated primarily at the hip and ankle, while body elevation is primarily driven by the ankle. Steeper jumps are achieved by increased thrust at the hip and ankle and greater downward rotation of the distal limb segments. Because of its proximity to the GRF vector, knee posture appears to be important in controlling torque directions about this joint and, potentially, torque magnitudes at more distal joints. Other factors correlated with higher jump angles include increased body angle in the preparatory phase, faster joint openings and increased joint excursion, higher ventrally directed force, and greater acceleration and velocity. Finally, we demonstrate that jumping performance in does not appear to be compromised by presumed adaptation to walking/running. Our results provide new insights into how frogs engage in a wide range of locomotor behaviours and the multi-functionality of anuran limbs.

摘要

尽管红腿跑蛙( )次要地是步行者/奔跑者,但它仍保留了多种运动模式的能力,包括以广泛的角度(近70度)跳跃。利用同步的后肢运动学和单脚地面反作用力,我们进行了逆动力学分析,以计算在 中不同角度跳跃时后肢关节周围的力臂和扭矩。我们表明,向前推力主要在髋部和脚踝处产生,而身体抬高主要由脚踝驱动。更陡峭的跳跃是通过髋部和脚踝处推力的增加以及远端肢体节段更大的向下旋转来实现的。由于其与地面反作用力矢量接近,膝盖姿势在控制该关节周围的扭矩方向以及潜在地控制更远端关节的扭矩大小方面似乎很重要。与更高跳跃角度相关的其他因素包括准备阶段身体角度的增加、更快的关节打开和更大的关节运动范围、更高的腹侧方向力以及更大的加速度和速度。最后,我们证明, 中的跳跃表现似乎并未因假定的对行走/奔跑的适应而受到损害。我们的结果为青蛙如何进行广泛的运动行为以及无尾两栖动物肢体的多功能性提供了新的见解。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验