Suppr超能文献

红腿跑蛙极端跳跃角度的运动控制

Kinematic control of extreme jump angles in the red-legged running frog, .

作者信息

Richards Christopher Thomas, Porro Laura Beatriz, Collings Amber Jade

机构信息

Department of Comparative Biomedical Sciences, The Royal Veterinary College, Hawkshead Lane, Hatfield AL9 7TA, UK

Department of Comparative Biomedical Sciences, The Royal Veterinary College, Hawkshead Lane, Hatfield AL9 7TA, UK.

出版信息

J Exp Biol. 2017 May 15;220(Pt 10):1894-1904. doi: 10.1242/jeb.144279. Epub 2017 Mar 8.

Abstract

The kinematic flexibility of frog hindlimbs enables multiple locomotor modes within a single species. Prior work has extensively explored maximum performance capacity in frogs; however, the mechanisms by which anurans modulate performance within locomotor modes remain unclear. We explored how , a species known for both running and jumping abilities, modulates take-off angle from horizontal to nearly vertical. Specifically, how do 3D motions of leg segments coordinate to move the centre of mass (COM) upwards and forwards? How do joint rotations modulate jump angle? High-speed video was used to quantify 3D joint angles and their respective rotation axis vectors. Inverse kinematics was used to determine how hip, knee and ankle rotations contribute to components of COM motion. Independent of take-off angle, leg segment retraction (rearward rotation) was twofold greater than adduction (downward rotation). Additionally, the joint rotation axis vectors reoriented through time, suggesting dynamic shifts in relative roles of joints. We found two hypothetical mechanisms for increasing take-off angle. Firstly, greater knee and ankle excursion increased shank adduction, elevating the COM. Secondly, during the steepest jumps, the body rotated rapidly backwards to redirect the COM velocity. This rotation was not caused by pelvic angle extension, but rather by kinematic transmission from leg segments via reorientation of the joint rotation axes. We propose that uses proximal leg retraction as the principal kinematic drive while dynamically tuning jump trajectory by knee and ankle joint modulation.

摘要

青蛙后肢的运动灵活性使单一物种能够采用多种运动模式。先前的研究广泛探讨了青蛙的最大运动能力;然而,无尾目动物在运动模式中调节运动表现的机制仍不清楚。我们研究了以奔跑和跳跃能力著称的 ,是如何将起跳角度从水平调节到几乎垂直的。具体而言,腿部各节段的三维运动是如何协调,以使质心(COM)向上和向前移动的?关节旋转又是如何调节跳跃角度的?我们使用高速视频来量化三维关节角度及其各自的旋转轴向量。利用逆运动学来确定髋、膝和踝关节的旋转如何对质心运动的各个分量产生影响。与起跳角度无关,腿部节段的后缩(向后旋转)比内收(向下旋转)大两倍。此外,关节旋转轴向量随时间重新定向,表明关节的相对作用发生了动态变化。我们发现了两种增加起跳角度的假设机制。首先,更大的膝关节和踝关节活动范围增加了小腿内收,从而提升了质心。其次,在最陡峭的跳跃过程中,身体迅速向后旋转,以重新调整质心速度的方向。这种旋转不是由骨盆角度伸展引起的,而是由腿部节段通过关节旋转轴的重新定向进行运动传递导致的。我们提出, 利用近端腿部后缩作为主要的运动驱动,同时通过膝关节和踝关节调节来动态调整跳跃轨迹。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验