Suppr超能文献

Pixying 行为:一种用于自由移动和头部固定动物的通用实时自动光学跟踪方法。

Pixying Behavior: A Versatile Real-Time and Automated Optical Tracking Method for Freely Moving and Head Fixed Animals.

机构信息

Neurocure Cluster of Excellence, Humboldt Universität zu Berlin, Germany; Berlin School of Mind and Brain, Humboldt Universität zu Berlin 10099, Germany.

Neurocure Cluster of Excellence, Humboldt Universität zu Berlin , Germany.

出版信息

eNeuro. 2017 Feb 20;4(1). doi: 10.1523/ENEURO.0245-16.2017. eCollection 2017 Jan-Feb.

Abstract

Here, we describe an automated optical method for tracking animal behavior in both head-fixed and freely moving animals, in real time and offline. It takes advantage of an off-the-shelf camera system, the Pixy camera, designed as a fast vision sensor for robotics that uses a color-based filtering algorithm at 50 Hz to track objects. Using customized software, we demonstrate the versatility of our approach by first tracking the rostro-caudal motion of individual adjacent row (D1, D2) or arc whiskers (β, γ), or a single whisker and points on the whisker pad, in head-fixed mice performing a tactile task. Next, we acquired high-speed video and Pixy data simultaneously and applied the pixy-based real-time tracking to high-speed video data. With this approach, we expand the temporal resolution of the Pixy camera and track motion () at the limit of high-speed video frame rates. Finally, we show that this system is flexible: it can be used to track individual whisker or limb position without any sophisticated object tracking algorithm, it can be used in many lighting conditions including infrared (IR); it can be used to track head rotation and location of multiple animals simultaneously. Our system makes behavioral monitoring possible in virtually any biological setting.

摘要

在这里,我们描述了一种用于实时和离线跟踪固定头部和自由移动动物行为的自动化光学方法。它利用了现成的相机系统 Pixy 相机,该相机设计为用于机器人的快速视觉传感器,它使用基于颜色的过滤算法以 50 Hz 的速度跟踪物体。使用定制软件,我们通过首先跟踪执行触觉任务的固定头部小鼠中单个相邻行(D1、D2)或弧形胡须(β、γ)或单个胡须和胡须垫上的点的头尾运动,展示了我们方法的多功能性。接下来,我们同时获取高速视频和 Pixy 数据,并将基于 Pixy 的实时跟踪应用于高速视频数据。通过这种方法,我们扩展了 Pixy 相机的时间分辨率,并以高速视频帧速率的极限跟踪运动()。最后,我们表明该系统具有灵活性:它可以用于跟踪单个胡须或肢体位置,而无需任何复杂的物体跟踪算法,它可以在许多照明条件下使用,包括红外(IR);它可以用于同时跟踪多个动物的头部旋转和位置。我们的系统使得在几乎任何生物环境中都可以进行行为监测。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e3f6/5318546/536bb901cdd7/enu0011722420001.jpg

相似文献

1
Pixying Behavior: A Versatile Real-Time and Automated Optical Tracking Method for Freely Moving and Head Fixed Animals.
eNeuro. 2017 Feb 20;4(1). doi: 10.1523/ENEURO.0245-16.2017. eCollection 2017 Jan-Feb.
2
Tracking whisker and head movements in unrestrained behaving rodents.
J Neurophysiol. 2005 Apr;93(4):2294-301. doi: 10.1152/jn.00718.2004. Epub 2004 Nov 24.
3
Natural whisker-guided behavior by head-fixed mice in tactile virtual reality.
J Neurosci. 2014 Jul 16;34(29):9537-50. doi: 10.1523/JNEUROSCI.0712-14.2014.
4
Temporal organization of multi-whisker contact in rats.
Somatosens Mot Res. 2001;18(2):91-100. doi: 10.1080/135578501012006192.
5
Unsupervised whisker tracking in unrestrained behaving animals.
J Neurophysiol. 2008 Jul;100(1):504-15. doi: 10.1152/jn.00012.2008. Epub 2008 May 7.
6
Unsupervised quantification of whisking and head movement in freely moving rodents.
J Neurophysiol. 2011 Apr;105(4):1950-62. doi: 10.1152/jn.00764.2010. Epub 2011 Feb 9.
7
Fast, Flexible Closed-Loop Feedback: Tracking Movement in "Real-Millisecond-Time".
eNeuro. 2019 Nov 1;6(6). doi: 10.1523/ENEURO.0147-19.2019. Print 2019 Nov/Dec.
8
Comparison of bilateral whisker movement in freely exploring and head-fixed adult rats.
Somatosens Mot Res. 2005 Sep;22(3):97-114. doi: 10.1080/08990220400015375.
9
High-precision, three-dimensional tracking of mouse whisker movements with optical motion capture technology.
Front Behav Neurosci. 2011 Jun 8;5:27. doi: 10.3389/fnbeh.2011.00027. eCollection 2011.
10
Characterisation of whisker control in the California sea lion (Zalophus californianus) during a complex, dynamic sensorimotor task.
J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2014 Oct;200(10):871-9. doi: 10.1007/s00359-014-0931-1. Epub 2014 Aug 20.

引用本文的文献

1
Top-down modulation of sensory processing and mismatch in the mouse posterior parietal cortex.
Nat Commun. 2025 May 7;16(1):4240. doi: 10.1038/s41467-025-58002-2.
2
Efficient training approaches for optimizing behavioral performance and reducing head fixation time.
PLoS One. 2022 Nov 10;17(11):e0276531. doi: 10.1371/journal.pone.0276531. eCollection 2022.
3
Refinements to rodent head fixation and fluid/food control for neuroscience.
J Neurosci Methods. 2022 Nov 1;381:109705. doi: 10.1016/j.jneumeth.2022.109705. Epub 2022 Sep 9.
4
Body language signals for rodent social communication.
Curr Opin Neurobiol. 2021 Jun;68:91-106. doi: 10.1016/j.conb.2021.01.008. Epub 2021 Feb 11.
5
Real-Time Closed-Loop Feedback in Behavioral Time Scales Using DeepLabCut.
eNeuro. 2021 Apr 16;8(2). doi: 10.1523/ENEURO.0415-20.2021. Print 2021 Mar-Apr.
6
WhiskEras: A New Algorithm for Accurate Whisker Tracking.
Front Cell Neurosci. 2020 Nov 17;14:588445. doi: 10.3389/fncel.2020.588445. eCollection 2020.
7
Rodent Arena Tracker (RAT): A Machine Vision Rodent Tracking Camera and Closed Loop Control System.
eNeuro. 2020 May 12;7(3). doi: 10.1523/ENEURO.0485-19.2020. Print 2020 May/Jun.
8
Changing phase relationship of the stepping rhythm to neuronal oscillatory theta activity in the septo-hippocampal network of mice.
Brain Struct Funct. 2020 Mar;225(2):871-879. doi: 10.1007/s00429-020-02031-8. Epub 2020 Feb 14.
9
A system for tracking whisker kinematics and whisker shape in three dimensions.
PLoS Comput Biol. 2020 Jan 24;16(1):e1007402. doi: 10.1371/journal.pcbi.1007402. eCollection 2020 Jan.
10
Somatic and Dendritic Encoding of Spatial Variables in Retrosplenial Cortex Differs during 2D Navigation.
Neuron. 2020 Jan 22;105(2):237-245.e4. doi: 10.1016/j.neuron.2019.10.016. Epub 2019 Nov 20.

本文引用的文献

1
Air-Track: a real-world floating environment for active sensing in head-fixed mice.
J Neurophysiol. 2016 Oct 1;116(4):1542-1553. doi: 10.1152/jn.00088.2016. Epub 2016 Jul 13.
2
Cellular Basis of Head Direction and Contextual Cues in the Insect Brain.
Curr Biol. 2016 Jul 25;26(14):1816-28. doi: 10.1016/j.cub.2016.05.037. Epub 2016 Jul 7.
3
Whisking.
Curr Biol. 2015 Feb 16;25(4):R137-40. doi: 10.1016/j.cub.2015.01.008.
4
Tactile object localization by anticipatory whisker motion.
J Neurophysiol. 2015 Jan 15;113(2):620-32. doi: 10.1152/jn.00241.2014. Epub 2014 Oct 22.
5
Strategy change in vibrissal active sensing during rat locomotion.
Curr Biol. 2014 Jul 7;24(13):1507-12. doi: 10.1016/j.cub.2014.05.036. Epub 2014 Jun 19.
6
The representation of social facial touch in rat barrel cortex.
Curr Biol. 2014 Jan 6;24(1):109-115. doi: 10.1016/j.cub.2013.11.049. Epub 2013 Dec 19.
7
Multisensory control of multimodal behavior: do the legs know what the tongue is doing?
PLoS One. 2013 Nov 4;8(11):e80465. doi: 10.1371/journal.pone.0080465. eCollection 2013.
8
Chronic cellular imaging of entire cortical columns in awake mice using microprisms.
Neuron. 2013 Nov 20;80(4):900-13. doi: 10.1016/j.neuron.2013.07.052. Epub 2013 Oct 17.
10
Motor cortex feedback influences sensory processing by modulating network state.
Neuron. 2013 Aug 7;79(3):567-78. doi: 10.1016/j.neuron.2013.06.008. Epub 2013 Jul 11.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验