Suppr超能文献

多模态行为的多感觉控制:腿部知道舌头在做什么吗?

Multisensory control of multimodal behavior: do the legs know what the tongue is doing?

机构信息

W. M. Keck Center for Neurophysics, University of California Los Angeles, Los Angeles, California, United States of America ; Department of Physics and Astronomy, University of California Los Angeles, Los Angeles, California, United States of America ; Brain Research Institute, University of California Los Angeles, Los Angeles, California, United States of America ; Integrative Center for Learning and Memory, University of California Los Angeles, Los Angeles, California, United States of America.

出版信息

PLoS One. 2013 Nov 4;8(11):e80465. doi: 10.1371/journal.pone.0080465. eCollection 2013.

Abstract

Understanding of adaptive behavior requires the precisely controlled presentation of multisensory stimuli combined with simultaneous measurement of multiple behavioral modalities. Hence, we developed a virtual reality apparatus that allows for simultaneous measurement of reward checking, a commonly used measure in associative learning paradigms, and navigational behavior, along with precisely controlled presentation of visual, auditory and reward stimuli. Rats performed a virtual spatial navigation task analogous to the Morris maze where only distal visual or auditory cues provided spatial information. Spatial navigation and reward checking maps showed experience-dependent learning and were in register for distal visual cues. However, they showed a dissociation, whereby distal auditory cues failed to support spatial navigation but did support spatially localized reward checking. These findings indicate that rats can navigate in virtual space with only distal visual cues, without significant vestibular or other sensory inputs. Furthermore, they reveal the simultaneous dissociation between two reward-driven behaviors.

摘要

理解适应行为需要精确控制呈现多感觉刺激,同时测量多种行为模式。因此,我们开发了一种虚拟现实设备,允许同时测量奖励检查,这是在联想学习范式中常用的一种测量方法,以及导航行为,同时精确控制视觉、听觉和奖励刺激的呈现。老鼠执行类似于莫里斯水迷宫的虚拟空间导航任务,只有远距离视觉或听觉线索提供空间信息。空间导航和奖励检查图谱显示出经验依赖性学习,并且与远距离视觉线索一致。然而,它们显示出一种分离,即远距离听觉线索不能支持空间导航,但确实支持空间本地化的奖励检查。这些发现表明,老鼠可以只用远距离视觉线索在虚拟空间中导航,而不需要显著的前庭或其他感觉输入。此外,它们揭示了两种奖励驱动行为的同时分离。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d6f0/3817119/996d0b4f9d5c/pone.0080465.g001.jpg

相似文献

1
Multisensory control of multimodal behavior: do the legs know what the tongue is doing?
PLoS One. 2013 Nov 4;8(11):e80465. doi: 10.1371/journal.pone.0080465. eCollection 2013.
2
Superior colliculus and active navigation: role of visual and non-visual cues in controlling cellular representations of space.
Hippocampus. 1998;8(4):340-72. doi: 10.1002/(SICI)1098-1063(1998)8:4<340::AID-HIPO4>3.0.CO;2-L.
3
Visual landmarks facilitate rodent spatial navigation in virtual reality environments.
Learn Mem. 2012 Feb 15;19(3):84-90. doi: 10.1101/lm.023523.111.
4
Proximal versus distal cue utilization in spatial navigation: the role of visual acuity?
Neurobiol Learn Mem. 2002 Sep;78(2):332-46. doi: 10.1006/nlme.2002.4062.
5
Differences in cue-dependent spatial navigation may be revealed by in-depth swimming analysis.
Behav Processes. 2009 Oct;82(2):190-7. doi: 10.1016/j.beproc.2009.06.008. Epub 2009 Jul 1.
6
The effects of overtraining in the Morris water maze on allocentric and egocentric learning strategies in rats.
Behav Brain Res. 2008 Oct 10;192(2):259-63. doi: 10.1016/j.bbr.2008.04.009. Epub 2008 Apr 20.
7
Sequential control of navigation by locale and taxon cues in the Morris water task.
Behav Brain Res. 2004 Oct 5;154(2):385-97. doi: 10.1016/j.bbr.2004.03.005.
8
Use of salient and non-salient visuospatial cues by rats in the Morris Water Maze.
Physiol Behav. 2006 Apr 15;87(4):794-9. doi: 10.1016/j.physbeh.2006.01.022. Epub 2006 Mar 6.
9
Auditory cues support place navigation in rats when associated with a visual cue.
Behav Brain Res. 2000 Dec 20;117(1-2):209-14. doi: 10.1016/s0166-4328(00)00293-x.
10
Rats with hippocampal lesions learn about allocentric place cues in a non-navigational task.
Behav Neurosci. 2000 Oct;114(5):895-906. doi: 10.1037//0735-7044.114.5.895.

引用本文的文献

2
Shortcutting from self-motion signals reveals a cognitive map in mice.
Elife. 2024 Nov 11;13:RP95764. doi: 10.7554/eLife.95764.
4
Interactions between rodent visual and spatial systems during navigation.
Nat Rev Neurosci. 2023 Aug;24(8):487-501. doi: 10.1038/s41583-023-00716-7. Epub 2023 Jun 28.
5
Naturalistic neuroscience and virtual reality.
Front Syst Neurosci. 2022 Nov 17;16:896251. doi: 10.3389/fnsys.2022.896251. eCollection 2022.
6
Hippocampus Maintains a Coherent Map Under Reward Feature-Landmark Cue Conflict.
Front Neural Circuits. 2022 Apr 26;16:878046. doi: 10.3389/fncir.2022.878046. eCollection 2022.
7
Moving bar of light evokes vectorial spatial selectivity in the immobile rat hippocampus.
Nature. 2022 Feb;602(7897):461-467. doi: 10.1038/s41586-022-04404-x. Epub 2022 Feb 9.
8
Linking hippocampal multiplexed tuning, Hebbian plasticity and navigation.
Nature. 2021 Nov;599(7885):442-448. doi: 10.1038/s41586-021-03989-z. Epub 2021 Oct 20.
9
Place Cells in Head-Fixed Mice Navigating a Floating Real-World Environment.
Front Cell Neurosci. 2021 Feb 12;15:618658. doi: 10.3389/fncel.2021.618658. eCollection 2021.
10
Goal-directed interaction of stimulus and task demand in the parahippocampal region.
Hippocampus. 2021 Jul;31(7):717-736. doi: 10.1002/hipo.23295. Epub 2021 Jan 4.

本文引用的文献

1
Multisensory control of hippocampal spatiotemporal selectivity.
Science. 2013 Jun 14;340(6138):1342-1346. doi: 10.1126/science.1232655. Epub 2013 May 2.
2
How vision and movement combine in the hippocampal place code.
Proc Natl Acad Sci U S A. 2013 Jan 2;110(1):378-83. doi: 10.1073/pnas.1215834110. Epub 2012 Dec 19.
3
Neural signals of extinction in the inhibitory microcircuit of the ventral midbrain.
Nat Neurosci. 2013 Jan;16(1):71-8. doi: 10.1038/nn.3283. Epub 2012 Dec 9.
4
Sensorimotor mismatch signals in primary visual cortex of the behaving mouse.
Neuron. 2012 Jun 7;74(5):809-15. doi: 10.1016/j.neuron.2012.03.040.
5
Choice-specific sequences in parietal cortex during a virtual-navigation decision task.
Nature. 2012 Mar 14;484(7392):62-8. doi: 10.1038/nature10918.
6
Visual landmarks facilitate rodent spatial navigation in virtual reality environments.
Learn Mem. 2012 Feb 15;19(3):84-90. doi: 10.1101/lm.023523.111.
7
Time and Associative Learning.
Comp Cogn Behav Rev. 2010;5:1-22. doi: 10.3819/ccbr.2010.50001.
8
Functional imaging of hippocampal place cells at cellular resolution during virtual navigation.
Nat Neurosci. 2010 Nov;13(11):1433-40. doi: 10.1038/nn.2648. Epub 2010 Oct 3.
9
The multifaceted interplay between attention and multisensory integration.
Trends Cogn Sci. 2010 Sep;14(9):400-10. doi: 10.1016/j.tics.2010.06.008. Epub 2010 Aug 2.
10
The reorganization and reactivation of hippocampal maps predict spatial memory performance.
Nat Neurosci. 2010 Aug;13(8):995-1002. doi: 10.1038/nn.2599. Epub 2010 Jul 18.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验