Suppr超能文献

在线性增长混合模型中使用协变量辅助类别枚举的评估。

An evaluation of the use of covariates to assist in class enumeration in linear growth mixture modeling.

作者信息

Hu Jinxiang, Leite Walter L, Gao Miao

机构信息

National Institute of Health, 9000 Rockville Pike, Bethesda, MD, 20892, USA.

College of Education, University of Florida, 1215 Norman Hall, Gainesville, FL, 32611, USA.

出版信息

Behav Res Methods. 2017 Jun;49(3):1179-1190. doi: 10.3758/s13428-016-0778-1.

Abstract

This study examined whether the inclusion of covariates that predict class membership improves class identification in a growth mixture modeling (GMM). We manipulated the degree of class separation, sample size, the magnitude of covariate effect on class membership, the covariance between the intercept and the slope, and fit two models with covariates and an unconditional model. We concluded that correct class identification in GMM requires large sample sizes and class separation, and that unconditional GMM performs better than GMM with covariates if the sample size and class separation are sufficiently large. With small sample sizes, GMM with covariates outperformed unconditional GMM, but the percentage of correct class enumeration was low across different fit criteria.

摘要

本研究检验了在增长混合模型(GMM)中纳入预测类别归属的协变量是否能改善类别识别。我们操纵了类别分离程度、样本量、协变量对类别归属的影响大小、截距与斜率之间的协方差,并拟合了两个包含协变量的模型和一个无条件模型。我们得出结论,GMM中正确的类别识别需要大样本量和类别分离,并且如果样本量和类别分离足够大,无条件GMM的表现优于带有协变量的GMM。对于小样本量,带有协变量的GMM表现优于无条件GMM,但在不同的拟合标准下,正确类别枚举的百分比都很低。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验