Li Libo, Hser Yih-Ing
UCLA Integrated Substance Abuse Programs, Semel Institute for Neuroscience and Human Behavior, Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California, Los Angeles, CA 90025, USA.
Multivariate Behav Res. 2011;46(2):266-302. doi: 10.1080/00273171.2011.556549.
In this article, we directly questioned the common practice in growth mixture model (GMM) applications that exclusively rely on the fitting model without covariates for GMM class enumeration. We provided theoretical and simulation evidence to demonstrate that exclusion of covariates from GMM class enumeration could be problematic in many cases. Based on our findings, we provided recommendations for examining the class enumeration by the fitting model without covariates and discussed the potential of covariate inclusion as a remedy for the weakness of GMM class enumeration without including covariates. A real example on the development of children's cumulative exposure to risk factors for adolescent substance use was provided to illustrate our methodological developments.
在本文中,我们直接质疑了生长混合模型(GMM)应用中的常见做法,即仅依靠无协变量的拟合模型进行GMM类别枚举。我们提供了理论和模拟证据,以证明在GMM类别枚举中排除协变量在许多情况下可能存在问题。基于我们的研究结果,我们给出了通过无协变量的拟合模型检查类别枚举的建议,并讨论了纳入协变量作为弥补不纳入协变量时GMM类别枚举弱点的一种补救方法的潜力。提供了一个关于儿童青少年物质使用风险因素累积暴露发展情况的实际例子,以说明我们的方法进展。